Nuraeni, T., Yunus, M., & Supriatin, S. (2025). The Reappearance of Menstruation After Childbirth Associated with Contraceptive Use Among Women of Reproductive Age in Kyrgyzstan. *JURNAL INFO KESEHATAN*, 23(3), 574-581. https://doi.org/10.31965/infokes.vol23.lss3.2014

574

Jurnal Info Kesehatan

Vol. 23, No. 3, September 2025, pp. 574-581 P-ISSN 0216-504X, E-ISSN 2620-536X DOI: 10.31965/infokes.Vol23.Iss3.2014

Journal homepage: https://jurnal.poltekkeskupang.ac.id/index.php/infokes

RESEARCH

Open Access

The Reappearance of Menstruation After Childbirth Associated with Contraceptive Use Among Women of Reproductive Age in Kyrgyzstan

Tating Nuraeni^{1a*}, Mohd Yunus^{2b}, Supriatin^{3,4c}

- ¹ Department of Public Health, Universitas Wiralodra, Indramayu, West Java, Indonesia
- ² Faculty of Medicine, Jalalabad State University, Jalal-Abad, Kyrgyzstan
- ³ Nursing Science Program, College of Health Science Cirebon, Cirebon, West Java, Indonesia
- ⁴ Faculty of Nursing, Lincoln University College, Petaling Jaya, Selangor Darul Ehsan, Malaysia

^a Email address: tatingnuraeni@gmail.com
^b Email address: doctor.shaikh28@gmail.com
^c Email address: supriatin98@yahoo.co.id

Received: 15 June 2025 Revised: 24 August 2025 Accepted: 14 September 2025

Abstract

The return of menstruation after childbirth is an important aspect of women's reproductive health, especially in the context of contraceptive use. This study aims to explore how the return of menstruation after childbirth is closely connected to contraceptive use, with various factors such as age, marital status, region, place of residence, education level, ethnicity, and wealth index in Kyrgyzstan playing a role. This study employed secondary data from the Kyrgyzstan 2023 Multiple Indicator Cluster Survey (MICS), focusing on women of reproductive age (15-49 years). The analysis utilized a final sample of 1.059 women and applied binary logistic regression to examine the relationship between contraceptive use and the return of menstruation after childbirth while controlling for factors such as age, marital status, region, education level, ethnicity, and wealth index. The study found that among 1.059 women who had given birth, 30.88% were using contraceptive methods, and 64.68% experienced the return of menstruation post-childbirth. The multivariate analysis indicates that menstrual return after giving birth, having marital status formerly married/in union, in Naryn, Talas, and Chui region, and having the richest wealth index significantly influence contraceptive use among women of reproductive age. These results underscore the importance of comprehensive sexual health education, improved healthcare services, and targeted communication strategies to increase contraceptive use in the region.

Keywords: Contraceptive Use, Kyrgyzstan, Multiple Indicator Cluster Survey (MICS), Reproductive Health, Return of Menstruation.

Corresponding Author:

Tating Nuraeni

Department of Public Health, University of Wiralodra, Indramayu, West Java, Indonesia

Email: tatingnuraeni@gmail.com

©The Author(s) 2025. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

1. INTRODUCTION

The return of menstruation after childbirth typically occurs between six weeks to one year postpartum, influenced by factors such as breastfeeding, hormonal changes, and the use of contraceptives (Robinet et al., 2023). Breastfeeding, particularly exclusive breastfeeding, has a notable effect on the timing of the return of menstruation. It is well-documented that exclusive breastfeeding can delay the resumption of ovulation and menstruation, thereby acting as a natural form of contraception (Reddy et al., 2019). This phenomenon is often referred to as lactational amenorrhea, which can provide a temporary contraceptive effect during the early postpartum period. However, many women may not be aware that ovulation can occur before the return of menstruation, leading to unintended pregnancies (Essien et al., 2024).

In Kyrgyzstan, the cultural context surrounding menstruation and postpartum practices plays a significant role in women's health decisions. Cultural beliefs may dictate the timing of sexual activity postpartum, with some women adhering to traditional practices that discourage sexual intercourse until menstruation resumes (Shabangu & Madiba, 2019). This cultural abstinence can impact the uptake of modern contraceptive methods, as women may perceive themselves as protected from pregnancy during the amenorrhea phase. However, studies indicate that the resumption of sexual activity is a significant predictor of contraceptive use in the postpartum period (Maretalinia et al., 2023). Women who resume sexual intercourse before the return of menstruation are more likely to seek out contraceptive options to prevent unintended pregnancies (Demie et al., 2018).

Moreover, the timing of the return of menstruation can influence women's perceptions of their fertility status. Women may mistakenly believe that the absence of menstruation equates to a low risk of pregnancy, which can lead to a lack of contraceptive use (Tesfu et al., 2022). These misunderstanding underscores the need for comprehensive education on reproductive health, emphasizing that ovulation can occur before the return of menstruation, thus increasing the risk of unintended pregnancies (Vanwesenbeeck, 2020). In addition to biological and educational factors, socioeconomic status and access to healthcare services significantly affect contraceptive use among postpartum women (Habibov & Zainiddinov, 2017; Robinet et al., 2023). Women with higher levels of education and those who have access to healthcare facilities are more likely to utilize modern contraceptive methods (Dagnew et al., 2020). There is a lack of country-specific evidence on how cultural beliefs, misconceptions about fertility during lactational amenorrhea, and variations in education and healthcare access interact to shape postpartum contraceptive behaviors. These gaps underscore the need for comprehensive, context-specific research in Kyrgyzstan to better inform policies and interventions that address unintended pregnancies in the postpartum period.

The role of healthcare providers is also pivotal in facilitating the adoption of contraceptive methods among postpartum women in Kyrgyzstan (World Health Organization, 2022). Training healthcare professionals to provide counseling on family planning options during the postpartum period can significantly influence women's choices (Robinet et al., 2023). Furthermore, integrating family planning services into maternal healthcare can ensure that women receive timely information and support regarding their reproductive health needs. Cultural practices surrounding menstruation and postpartum recovery can also impact women's health behaviors. In some cultures, women may be considered "unclean" until menstruation resumes, which can affect their willingness to engage in sexual activity or seek contraceptive services (Shabangu & Madiba, 2019). Understanding these cultural nuances is essential for developing effective health interventions that resonate with women's lived experiences and beliefs. This study to examine the reappearance of menstruation after childbirth is intricately linked to contraceptive use, influenced by a multitude of factors including women's age, marital status, region, place of residence, educational level, ethnicity, and wealth index in Kyrgyzstan.

576

2. RESEARCH METHOD

This study employed a cross-sectional design using secondary data from the Kyrgyzstan 2023 Multiple Indicator Cluster Survey (MICS). The MICS is a nationally representative household survey conducted using a multistage, stratified cluster sampling design. It provides comprehensive data on health, education, and demographic indicators. The survey provides a comprehensive overview of health, education, and living conditions nationwide. The survey highlights critical disparities in access to services and overall well-being in a country where 68.5% of the population resides in rural areas (National Statistical Committee of the Kyrgyz Republic and UNICEF, 2024). Key findings include insights into early childhood nutrition, school attendance rates, and other issues affecting Kyrgyzstan's youth. With data on 177 unique indicators, including 31 aligned with the Sustainable Development Goals (SDGs), the MICS equips policymakers and development partners with evidence-based tools to track progress, address inequalities, and implement targeted interventions to improve living standards across the country.

The primary objectives of the Kyrgyzstan MICS 2023 were to assess the situation of children, adolescents, women, and households while generating high-quality, disaggregated data to inform policies promoting social inclusion of vulnerable groups. Additionally, the survey aimed to provide data for monitoring national and global SDG indicators, validate existing data, and generate internationally comparable statistics. This collaborative effort was made possible through partnerships between the National Statistical Committee of the Kyrgyz Republic, UNICEF, USAID, the Government of Switzerland, and the United Nations Population Fund (UNFPA). National Statistical Committee of the Kyrgyz Republic and UNICEF. 2023 Kyrgyzstan Multiple Indicator Cluster Survey, Snapshots of Key Findings. Bishkek, Kyrgyzstan: National Statistical Committee of the Kyrgyz Republic and UNICEF, 2024, Kyrgyzstan. The dataset is open to public upon registered, that can be assessed thorugh the website https://mics.unicef.org/news/just-released-kyrgyzstan-2023-mics-survey-findings-snapshots-and-datasets.

The total sample in MICS Kyrgyzstan was 7.200 individuals who were only 6.715 occupied and 6.639 interviewed. For women of reproductive age, among 5.753 who were eligible for interview, 98% or 5.629 of them were interviewed. In this current study, after data management processes and data cleaning, the final sample size was 1.059 women. The inclusion criteria of the study sample of the current study were women of reproductive age 15 to 49 years old, and experienced childbearing. The exclusion criteria were those were not completed the women's questionnaire.

This study focused on women of reproductive age 15 to 49 years old. The dependent variable of this study is using method to prevent the pregnancy (no/yes). The main independent variable is experienced of return the menstruation after giving birth (no/yes). The control variables including women's age (in years old), marital status (currently married/in union or formerly), region, place of residence, educational level, ethnicity, and wealth index. The multivariate data analysis was done using binary logistic regression using STATA software.

The procedure and tools of MICS was approved by UNICEF. As the study utilized anonymised data, ethical approval was not required.

3. RESULTS AND DISCUSSION

The results of this study offer univariate and multivariate. Table 1 below describes the general characteristics of the samples. It revealed that among 1.059 women ever given birth, 30.88% of them are using methods to prevent pregnancy. According to the main independent variables, 64.68% of the women were returned the menstruation after giving birth. The women's age explains the mean of 30 years old with standard deviation 5.95 years. The marital status of them revealed the majority of them were in marriage or union at the time of survey

(98.11%). In terms of the region, the highest proportion is shown by Osh (16.43%), Batken (13.50%), and Jalal-Abad (13.03%). Based on two categories of place of residence, those lived in rural were took more than half (65.82%). The educational level of the study samples shows the percentage of those graduated from secondary school was the highest one (37.96%). The ethnic majority was predominantly by Kyrgyz ethnic group (78.09%). The highest proportion of wealth index was found for those in the fourth (23.32%).

Table 1. The general characteristics of the study sample.

Table 1. The general characteristics of the study sample.						
Variables	Frequency/mean (standard deviation)	%				
Using contraceptive						
No	732	69.12				
Yes	327	30.88				
Menstrual return after giving birth						
No	374	35.32				
Yes	685	64.68				
Women's age	29.60 (5.95)					
Marital status						
Currently married/in union	1,039	98.11				
Formerly married/in union	20	1.89				
Region						
Batken	143	13.50				
Jalal-Abad	138	13.03				
Issyk-kul	70	6.61				
Naryn	132	12.46				
Osh	174	16.43				
Talas	113	10.67				
Chui	95	8.97				
Bishkek c	59	5.57				
Osh c	135	12.75				
Place of residence						
Urban	362	34.18				
Rural	697	65.82				
Education level						
Pre-school or none/primary	5	0.47				
Basic secondary	107	10.10				
Complete secondary	402	37.96				
Professional primary/middle	244	23.04				
Higher	301	28.42				
Ethnicity						
Kyrgyz	827	78.09				
Russian	13	1.23				
Uzbek	182	17.19				
Others	37	3.49				
Wealth index						
Poorest	223	21.06				
Second	207	19.55				
Middle	202	19.07				
Fourth	247	23.32				
Richest	180	17.00				

| 578

Table 2 below offers the multivariate analysis results. It revealed that menstrual return effect on contraceptive use by 3.40 times compared to those who experienced unreturn the menstruation. Additionally, compared to women with currently married/in union, the former married/union were decreased 95% probability to use contraceptive use. Moreover, compared to those lived in the Batken region, women lived in Naryn, Talas, and Chui were more likely to use contraception by 6.53, 2.69, and 3.44 times, respectively. According to their wealth index, compared to those were poorest, those richest were 2.01 times more likely to use contraception. However, there are other control variables that were found insignificantly associated with using contraceptive use. Those variables including women's age, place of residence, educational level, and ethnicity. The model in Table 2 was describing the factors influencing contraceptive use by 12.93%.

Table 2. The binary logistic regression of the effect of menstrual return on contraceptive use.

Table 2. The binary logistic regression of the effect of menstrual return on contraceptive use.							
Variables	AOR	95 % CI (low	ver-upper)	p-value			
Menstrual return after giving birth							
No	ref						
Yes	3.40	2.44	4.75	0.000			
Women's age	1.03	1.00	1.05	0.052			
Marital status				_			
Currently married/in union	ref						
Formerly married/in union	0.05	0.01	0.39	0.005			
Region							
Batken	ref						
Jalal-Abad	1.46	0.78	2.73	0.232			
Issyk-kul	0.85	0.37	1.95	0.706			
Naryn	6.53	3.44	12.37	0.000			
Osh	1.27	0.68	2.36	0.458			
Talas	2.69	1.38	5.23	0.004			
Chui	3.44	1.76	6.70	0.000			
Bishkek c	1.20	0.50	2.89	0.686			
Osh c	1.79	0.88	3.65	0.110			
Place of residence							
Urban	ref						
Rural	0.88	0.56	1.38	0.575			
Education level							
Pre-school or none/primary/basic							
secondary	ref						
Complete secondary	0.78	0.45	1.36	0.383			
Professional primary/middle	1.01	0.56	1.82	0.974			
Higher	0.96	0.53	1.73	0.897			
Ethnicity							
Kyrgyz	ref						
Russian	2.54	0.69	9.32	0.161			
Uzbek	0.97	0.58	1.63	0.913			
Others	1.41	0.63	3.14	0.402			
Wealth index							
Poorest	ref						
Second	1.34	0.82	2.18	0.244			

Variables	AOR	95 % CI (low	ver-upper)	p-value
Middle	1.14	0.68	1.92	0.616
Fourth	1.25	0.74	2.12	0.401
Richest	2.01	1.07	3.80	0.030
cons	0.04	0.01	0.13	0.000

Number of obs = 1,059 LR chi2(22) = 169.27 Prob > chi2 = 0.0000 Log likelihood = -569.95701 Pseudo R2 = 0.1293

Based on the findings of this study, menstrual return after giving birth significantly influences contraceptive use among women of reproductive age in Kyrgyzstan. It is in line with another study that found in the postpartum period, factors such as educational attainment, family planning counseling during prenatal and postnatal care, resumption of sexual activity, and return of menstruation significantly influence modern contraceptive use (Abraha et al., 2017). The results of the same study were also shown in research from other countries, such as Ethiopia, which showed that knowledge about the return of menstruation after giving birth was significantly related to the use of modern contraception after childbirth (Ashebir & Tadesse, 2020). Television-based family planning messages have been shown to have a positive impact on contraceptive use in Kyrgyzstan, increasing the likelihood by 11% (Habibov & Zainiddinov, 2017). Postpartum contraceptive use and unmet need for contraception is low in low- and middle-income countries (Dev et al., 2019).

The other result of this study showed having marital status formerly married/in union is also significantly associated with contraceptive use. In particular, married men in Kyrgyzstan showed higher contraceptive use with more children and lower socioeconomic status (Kogay & Itua, 2017). Across 73 low- and middle-income countries, married adolescents without children had the lowest contraceptive prevalence, suggesting cultural norms significantly influence use (de Vargas Nunes Coll et al., 2019). A similar pattern was found in Nepal, where contraceptive use was associated with early marriage and earlier births (Adhikari et al., 2019). These findings highlight the need for targeted interventions that take into account cultural context and socioeconomic factors.

Research on contraceptive use among women of reproductive age reveals various socioeconomic and demographic factors influencing uptake. This study showed wealth index is significantly associated with contraceptive use, although the relationship varies across studies. In Nepal, poorer women were more likely to use contraception than the richest (Pokhrel et al., 2022). Conversely, in Kyrgyzstan, men in richer quintiles were less likely to use modern contraceptives (Kogay & Itua, 2017). Education level, age, number of living children, and exposure to contraceptive information were significant determinants in Rwanda (Habyarimana & Ramroop, 2018). In Burkina Faso, household wealth, having a living son, and proximity to health facilities positively influence contraceptive use (Wulifan et al., 2017). Other factors influencing contraceptive use include religious affiliation, women's working status, and husband's desire for more children (Habyarimana & Ramroop, 2018). These findings highlight the complex interplay of factors influencing contraceptive use and the need for targeted interventions to increase uptake. Several limitations should be acknowledged. First, the crosssectional design prevents causal inference, as both menstruation status and contraceptive use were measured at the same time. Second, the reliance on self-reported data may be subject to recall or social desirability bias, particularly regarding sensitive issues such as fertility and contraceptive practices. Third, the analysis was limited to variables available in the MICS dataset, and potentially important factors such as partner influence, cultural norms, or quality of healthcare counseling could not be assessed. Finally, restricting the analysis to women who had given birth within two years may reduce generalizability to all reproductive-age women. For future research longitudinal and mixed-methods studies are needed to explore cultural,

1580

behavioral, and healthcare factors influencing postpartum fertility and contraceptive use in Kyrgyzstan.

4. **CONCLUSION**

In conclusion, the study highlights that the return of menstrual return after giving birth, having marital status formerly married/in union, in Naryn, Talas, and Chui region, and having the richest wealth index were key factors influencing contraceptive use among women in Kyrgyzstan, while other regions, place of residence, education level, ethnicity and under richest of wealth index were not significantly associated. These findings provide valuable insights for targeted interventions to improve reproductive health and contraceptive use in the country.

REFERENCES

- Abraha, T. H., Teferra, A. S., & Gelagay, A. A. (2017). Postpartum modern contraceptive use in northern Ethiopia: prevalence and associated factors. *Epidemiology and Health*, *39*, e2017012. https://doi.org/10.4178/epih.e2017012
- Adhikari, R., Acharya, D., Ranabhat, C. L., & KC, R. (2019). Factors Associated with Non-Use of Contraceptives among Married Women in Nepal. *Journal of Health Promotion*, 7, 7–18. https://doi.org/10.3126/jhp.v7i0.25490
- Ashebir, W., & Tadesse, T. (2020). Associated Factors of Postpartum Modern Contraceptive Use in Burie District, Amhara Region, Ethiopia. *Journal of Pregnancy*, 2020, 1–9. https://doi.org/10.1155/2020/6174504
- Dagnew, G. W., Asresie, M. B., Fekadu, G. A., & Gelaw, Y. M. (2020). Modern contraceptive use and factors associated with use among postpartum women in Ethiopia; further analysis of the 2016 Ethiopia demographic and health survey data. *BMC Public Health*, 20(1), 661. https://doi.org/10.1186/s12889-020-08802-6
- de Vargas Nunes Coll, C., Ewerling, F., Hellwig, F., & de Barros, A. J. D. (2019). Contraception in adolescence: the influence of parity and marital status on contraceptive use in 73 low-and middle-income countries. *Reproductive Health*, 16(1), 21. https://doi.org/10.1186/s12978-019-0686-9
- Demie, T. G., Demissew, T., Huluka, T. K., Workineh, D., & Libanos, H. G. (2018). Postpartum Family Planning Utilization among Postpartum Women in Public Health Institutions of Debre Berhan Town, Ethiopia. *Journal of Women's Health Care*, 7(2), 1000426. https://doi.org/10.4172/2167-0420.1000426
- Dev, R., Kohler, P., Feder, M., Unger, J. A., Woods, N. F., & Drake, A. L. (2019). A systematic review and meta-analysis of postpartum contraceptive use among women in low- and middle-income countries. *Reproductive Health*, *16*(1), 154. https://doi.org/10.1186/s12978-019-0824-4
- Essien, S. K., Chireh, B., & Essien, J. K. (2024). Knowledge about unintended pregnancy shortly after childbirth: An issue of ineffective counseling or adherence? *Women's Health*, 20. https://doi.org/10.1177/17455057241255655
- Habibov, N., & Zainiddinov, H. (2017). Effect of TV and radio family planning messages on the probability of modern contraception utilization in post-Soviet Central Asia. *The International Journal of Health Planning and Management*, 32(1), e17–e38. https://doi.org/10.1002/hpm.2318
- Habyarimana, F., & Ramroop, S. (2018). The Analysis of Socio-Economic and Demographic Factors Associated with Contraceptive Use Among Married Women of Reproductive Age in Rwanda. *The Open Public Health Journal*, 11(1), 348–359. https://doi.org/10.2174/1874944501811010348

- Kogay, V., & Itua, I. (2017). Prevalence and socio-economic factors determining use of modern contraception among married men in Kyrgyzstan: evidence from a demographic and health survey. Public Health, 142, 56-63. https://doi.org/10.1016/j.puhe.2016.10.008
- Maretalinia, M., Rusmitasari, H., Supriatin, S., Amaliah, L., Sukmawati, E., & Suwarni, L. (2023). Factors influencing the utilization of the Modern Family Planning (MFP) method under the National Health Insurance in Indonesia: An analysis of the 2017 IDHS. Public Health of Indonesia, 9(2), 47–56. https://doi.org/10.36685/phi.v9i2.694
- National Statistical Committee of the Kyrgyz Republic and UNICEF. (2024). Kyrgyz Republic Multiple Indicator Cluster Survey 2023, Survey Findings Report. Bishkek, Kyrgyzstan: National Statistical Committee of the Kyrgyz Republic and UNICEF.
- Pokhrel, T., Aryal, K., Adhikari, R., Dulal, B. P., Karki, D. K., Dahal, H. R., Dangol, M. S., Poudel, P., Bhattarai, N., & Lamichhane, P. (2022). Socioeconomic Determinants of Inequalities in the Use of Modern Contraception among Currently Married Women. Journal of Nepal Health Research Council. 19(04). 705-711. https://doi.org/10.33314/jnhrc.v19i04.3738
- Reddy N., S., Sindhu, K. N., Ramanujam, K., Bose, A., Kang, G., & Mohan, V. R. (2019). Exclusive breastfeeding practices in an urban settlement of Vellore, southern India: findings from the MAL-ED birth cohort. *International Breastfeeding Journal*, 14(1), 29. https://doi.org/10.1186/s13006-019-0222-0
- Robinet, L., Jeffredo, A., & Clesse, C. (2023). Factors Influencing Contraceptive Choice During the Postpartum Period: A Qualitative Systematic Review. Journal of Midwifery & Women's Health, 68(2), 265–286. https://doi.org/10.1111/jmwh.13471
- Shabangu, Z., & Madiba, S. (2019). The Role of Culture in Maintaining Post-Partum Sexual Abstinence of Swazi Women. International Journal of Environmental Research and Public Health, 16(14), 2590. https://doi.org/10.3390/ijerph16142590
- Tesfu, A., Beyene, F., Sendeku, F., Wudineh, K., & Azeze, G. (2022). Uptake of postpartum modern family planning and its associated factors among postpartum women in Ethiopia: systematic review meta-analysis. Helivon, e08712. 8(1),https://doi.org/10.1016/j.heliyon.2021.e08712
- Vanwesenbeeck, I. (2020). Comprehensive Sexuality Education. In Oxford Research Global **Public** *Encyclopedia* of Health. Oxford University Press. https://doi.org/10.1093/acrefore/9780190632366.013.205
- World Health Organization. (2022). Kyrgyzstan: health system review. Health Systems in 24(3), 1-149. Retrieved Transition, from: https://eurohealthobservatory.who.int/publications/i/kyrgyzstan-health-system-review-2022
- Wulifan, J. K., Mazalale, J., Jahn, A., Hien, H., Ilboudo, P. C., Meda, N., Robyn, P. J., Hamadou, S., Haidara, O., & Allegri, M. De. (2017). Factors Associated with Contraceptive Use among Women of Reproductive Age in Rural Districts of Burkina Faso. Journal of Health Care for the Poor and Underserved, 28(1), 228–247. https://doi.org/10.1353/hpu.2017.0019