The Effect of Contact Time Variations of Activated Carbon from Coconut Shell on the Peroxide Value in Used Cooking Oil

Authors

  • Herlinda Djohan Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak, West Kalimantan, Indonesia
  • Hendra Budi Sungkawa Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak, West Kalimantan, Indonesia
  • Fara Chitra Department of Enviromental Health, Poltekkes Kemenkes Pontianak, Pontianak, West Kalimantan, Indonesia
  • Nur Reza Ningsih Department of Enviromental Health, Poltekkes Kemenkes Pontianak, Pontianak, West Kalimantan, Indonesia

DOI:

https://doi.org/10.31965/infokes.Vol22.Iss4.1856

Keywords:

Peroxide Value, Activated Carbon, Used Oil, Cooking Oil

Abstract

Cooking oil is a commonly used food product in daily life, both in households and commercially, especially for frying purposes. The repeated use of cooking oil can lead to an increase in peroxide value, which may pose health risks. High peroxide values are carcinogenic and can trigger various health problems, such as elevated cholesterol levels and heart disease. One method to reduce peroxide value is by using activated carbon, such as activated carbon derived from coconut shells. This study aims to analyze the effect of contact time variations of activated carbon from coconut shells on the reduction of peroxide value in used cooking oil. The research design used was a quasi-experiment with an iodometric testing method. A total of 24 samples of used cooking oil were treated with activated carbon from coconut shells for different contact times: 20 minutes, 30 minutes, and 40 minutes. The peroxide value was then measured. The results showed that varying the contact time with activated carbon from coconut shells resulted in the following average peroxide values: 15.57 meq O2/kg, 7.57 meq O2/kg, 6.58 meq O2/kg, and 5.82 meq O2/kg. The percentage reduction in peroxide value was 0%, 51.41%, 57.06%, and 62.64%, respectively. In conclusion, the study found a significant effect of contact time variations of activated carbon from coconut shells on the reduction of peroxide value in used cooking oil, with a probability value of 0.000 < 0.05.

Downloads

Download data is not yet available.

References

Anconi, A. C. S. A., Brito, N. C. S., & Nunes, C. A. (2022). Determination of peroxide value in edible oils based on Digital Image Colorimetry. Journal of Food Composition and Analysis, 113, 104724. https://doi.org/10.1016/j.jfca.2022.104724

Awogbemi, O., Onuh, E. I., & Inambao, F. L. (2019). Comparative study of properties and fatty acid composition of some neat vegetable oils and waste cooking oils. International Journal of Low-Carbon Technologies, 14(3), 417-425. https://doi.org/10.1093/ijlct/ctz038

Bhattacharya, S. (2022). Snack Foods: Processing and Technology. Academic Press.

Bow, Y., Effendi, S., Taqwa, A., Rinditya, G., Pratama, M. Y., & Rusdianasari, R. (2019). Analysis of Air Fuel Ratio on Combustion Flames of Mixture Waste Cooking Oil and Diesel using Preheating Method. In International Conference on Sustainable Agriculture, Food and Energy (SAFE). Chiang Mai Rajabhat University-THAILAND.

Dewi, P. S., & Ulfah, M. (2021). Quality Test of Palm Cooking Oil Used Repeatedly Based on Free Fatty Acid Content, Moisture Content, Peroxide Number. Journal of Science and Technology Research for Pharmacy, 1(1), 34-41. https://doi.org/10.15294/JSTRP.V1I1.44461

Emelia & Akmal, (2021). Analisis Konsumsi Makanan Jajanan Terhadap Pemenuhan Gizi Remaja. Journal of Nutrition and Culinary (JNC), 1(1). https://doi.org/10.24114/jnc.v1i1.20697

Erickson, M. D., Yevtushenko, D. P., & Lu, Z. X. (2023). Oxidation and thermal degradation of oil during frying: A review of natural antioxidant use. Food Reviews International, 39(7), 4665-4696. https://doi.org/10.1080/87559129.2022.2039689

Foo, W. H., Koay, S. S. N., Chia, S. R., Chia, W. Y., Tang, D. Y. Y., Nomanbhay, S., & Chew, K. W. (2022). Recent advances in the conversion of waste cooking oil into value-added products: A review. Fuel, 324, 124539. https://doi.org/10.1016/j.fuel.2022.124539

Gharby, S. (2022). Refining vegetable oils: Chemical and physical refining. The Scientific World Journal, 2022(1), 6627013. https://doi.org/10.1155/2022/6627013

Ghohestani, E., Tashkhourian, J., & Hemmateenejad, B. (2023). Colorimetric determination of peroxide value in vegetable oils using a paper based analytical device. Food Chemistry, 403, 134345. https://doi.org/10.1016/j.foodchem.2022.134345

Hanum, Y. (2016). Dampak bahaya makanan gorengan bagi jantung. Jurnal Keluarga Sehat Sejahtera, 14(28), 103-114. Retrieved from https://jurnal.unimed.ac.id/2012/index.php/jkss/ article/download/4700/4131

Kaniapan, S., Hassan, S., Ya, H., Patma Nesan, K., & Azeem, M. (2021). The utilisation of palm oil and oil palm residues and the related challenges as a sustainable alternative in biofuel, bioenergy, and transportation sector: A review. Sustainability, 13(6), 3110. https://doi.org/10.3390/su13063110

Machado, M., Rodriguez-Alcalá, L. M., Gomes, A. M., & Pintado, M. (2023). Vegetable oils oxidation: mechanisms, consequences and protective strategies. Food Reviews International, 39(7), 4180-4197. https://doi.org/10.1080/87559129.2022.2026378

Mannu, A., Garroni, S., Ibanez Porras, J., & Mele, A. (2020). Available technologies and materials for waste cooking oil recycling. Processes, 8(3), 366. https://doi.org/10.3390/pr8030366

Mariana, R. R., Susanti, E., Hidayati, L., & Wahab, R. A. (2020, April). Analysis of peroxide value, free fatty acid, and water content changes in used cooking oil from street vendors in Malang. In AIP Conference Proceedings, 2231, 040057. AIP Publishing. https://doi.org/10.1063/5.0002656

Mbwana, H. A., & Mwinuka, L. (2024). Food Consumption Patterns of Heterogeneous Adults from Non-Specific Locations in Three East African Cities: a Qualitative Comparative Study. African Journal of Food, Agriculture, Nutrition and Development, 24(9), 24432-24447. https://doi.org/ 10.18697/ajfand.134.24535

Menes, C. C., Japitana, M. A. F., Chua, J. G. D., Dico Jr, M. R., Parcon, A. M. D., & Makilan, R. E. (2019). Street Food: Stories and Insights on Production and Operations, Marketing Strategies, and Vending. Management, 1(1), 42-69.

Mishra, S., Firdaus, M. A., Patel, M., & Pandey, G. (2023). A study on the effect of repeated heating on the physicochemical and antioxidant properties of cooking oils used by fried food vendors of Lucknow city. Discover Food, 3(1), 7. https://doi.org/10.1007/s44187-023-00046-8

Paputungan, R., Nikmatin, S., Maddu, A., & Pari, G. (2018). Mikrostruktur Arang Aktif Batok Kelapa Untuk Pemurnian Minyak Goreng Habis Pakai. Jurnal Keteknikan Pertanian, 6(1), 69-74. https://doi.org/10.19028/jtep.06.1.69-74

Pellenz, L., de Oliveira, C. R. S., da Silva Júnior, A. H., da Silva, L. J. S., da Silva, L., de Souza, A. A. U., ... & da Silva, A. (2023). A comprehensive guide for characterization of adsorbent materials. Separation and Purification Technology, 305, 122435. https://doi.org/10.1016/j.seppur.2022.122435

Pourhakkak, P., Taghizadeh, A., Taghizadeh, M., Ghaedi, M., & Haghdoust, S. (2021). Fundamentals of adsorption technology. In Interface science and technology, 33, 1-70. Elsevier. https://doi.org/10.1016/B978-0-12-818805-7.00001-1

Rathi, B. S., & Kumar, P. S. (2021). Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environmental Pollution, 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995

Roy, D., Boss, R., Saroj, S., Karandikar, B., Pradhan, M., & Pandey, H. (2021). Snack food consumption across the pune transect in India: a comparison of dietary behaviors based on consumer characteristics and locations. Nutrients, 13(12), 4325. https://doi.org/10.3390/nu13124325

Sugiyono. (2019). Metode Penelitian Kuantitatif Kualitatif dan R&D (Ke-2). Alfabeta.

Sulaiman, N. S., Sintang, M. D., Mantihal, S., Zaini, H. M., Munsu, E., Mamat, H., ... & Pindi, W. (2022). Balancing functional and health benefits of food products formulated with palm oil as oil sources. Heliyon, 8(10). https://doi.org/10.1016/j.heliyon.2022.e11041

Suzihaque, M. U. H., Alwi, H., Ibrahim, U. K., Abdullah, S., & Haron, N. (2022). Biodiesel production from waste cooking oil: A brief review. Materials Today: Proceedings, 63, S490-S495. https://doi.org/10.1016/j.matpr.2022.04.527

Upreti, Y. R., Bastien, S., Bjonness, B., & Devkota, B. (2020). Socio-Ecological factors associated with snacking behaviors of basic school students in Nepal. Current Research in Nutrition and Food Science Journal, 8(3), 774-784. https://dx.doi.org/10.12944/CRNFSJ.8.3.10

World Health Organization. (2019). WHO/FAO Inter-Regional meeting to promote healthy diets through the informal food sector in Asia: 20–22 August 2019, Bangkok, Thailand (No. SEA-NUT-201). World Health Organization. Regional Office for South-East Asia.

Zhang, N., Li, Y., Wen, S., Sun, Y., Chen, J., Gao, Y., ... & Yu, X. (2021). Analytical methods for determining the peroxide value of edible oils: A mini-review. Food Chemistry, 358, 129834. https://doi.org/10.1016/j.foodchem.2021.129834

Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: a review. Environmental pollution, 252, 352-365. https://doi.org/10.1016/j.scitotenv.2018.07.279

Zunifer & Ayu, (2020). Ukuran Partikel dan Waktu Kontak Kabon Aktif dari Kulit Singkong Terhadap Mutu Minyak Jelantah. SAGU Journal. 19(2), 27-38. http://dx.doi.org/10.31258/sagu.v19i2.7896

Downloads

Published

2024-12-24

How to Cite

Djohan, H., Sungkawa, H. B., Chitra, F., & Ningsih, N. R. (2024). The Effect of Contact Time Variations of Activated Carbon from Coconut Shell on the Peroxide Value in Used Cooking Oil . JURNAL INFO KESEHATAN, 22(4), 747–755. https://doi.org/10.31965/infokes.Vol22.Iss4.1856

Issue

Section

Original Articles