Body Mass Index, Age, and Gender on Bone Mineral Density in the Elderly
DOI:
https://doi.org/10.31965/jkp.v10i1.1880Abstract
Introduction: Osteoporosis is a chronic bone disease caused by reduced bone mass and impaired bone structure. This disease is a widespread and serious public health problem. The most common consequences of this condition are hip and vertebral fractures, which can carry a substantial risk of premature morbidity and mortality. The best strategy to overcome osteoporosis is prevention by identifying risk factors and early diagnosis. This article aims to provide an overview of the influence of body mass index (BMI), age, and gender on bone mineral density (BMD) in the elderly. Methods: This article is a literature review with a search for literature sources using the keywords bone mineral density, body mass index, age, gender, and elderly in the Google Scholar, PubMed, PMC, Researchgate, and Sciencedirect databases. The inclusion criteria are online and full-text scientific articles in the last 10 years in international journals. Results: Several studies have shown that the prevalence of osteoporosis is higher in people with low BMI, but other studies have found a decrease in BMD in obese subjects; with increasing age there is a decrease in osteoblast differentiation and activity, increased osteoclastogenesis and osteoclast activity, and increased bone resorption; females are more susceptible to osteoporosis because decreased estradiol during menopause causes a sharp increase in bone turnover and resorption. Conclusion: There are mixed findings regarding the relationship between BMI and BMD. Age is a factor that needs to be considered because a person's chances of developing osteoporosis will increase with age. Females are more susceptible to osteoporosis.
Downloads
References
Agidigbi, T. S., & Kim, C. (2019). Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int J Mol Sci, 20(14), 1–16. https://doi.org/10.3390/ijms20143576
Alswat, K. A. (2017). Gender disparities in osteoporosis. J Clin Med Res, 9(5), 382–387. https://doi.org/10.14740/jocmr2970w
Amarasekara, D. S., Yun, H., Kim, S., Lee, N., Kim, H., & Rho, J. (2018). Regulation of osteoclast differentiation by cytokine networks. Immune Netw, 18(1), 1–18. https://doi.org/10.4110/in.2018.18.e8
Annamalai, R., & Lal, J. S. (2018). Correlation of anthropometric measurements with bone mineral density in south Indian population. Int J Orthop Sci, 4(1), 221–224. https://doi.org/10.22271/ortho.2018.v4.i1d.31
Aryal, B. (2020). Awareness of weight and situation of body mass Index and hypertension in Nepalese teachers. J Health Promot, 8, 5–14.
Bădilă, A. E., Rădulescu, D. M., Ilie, A., Niculescu, A. G., Grumezescu, A. M., & Rădulescu, A. R. (2022). Bone regeneration and oxidative stress: An updated overview. Antioxidants, 11(2), 1–22. https://doi.org/10.3390/antiox11020318
Brown, C. (2017). Osteoporosis: Staying strong. Nature, 550(7674), S15–S17.
Chen, Z., Luo, W., Zhang, Q., Lei, B., Wang, T., Chen, Z., Fu, Y., Guo, P., Li, C., Ma, T., Liu, J., & Ding, Y. (2021). Osteoporosis diagnosis based on ultrasound radio frequency signal via multi-channel convolutional neural network. Annu Int Conf IEEE Eng Med Biol Soc, 832–835.
Corrado, A., Cici, D., Rotondo, C., Maruotti, N., & Cantatore, F. P. (2020). Molecular basis of bone aging. Int J Mol Sci, 21(10), 1–17. https://doi.org/10.3390/ijms21103679
Cui, P., Wang, W., Wang, Z., Hu, X., Liu, X., Kong, C., & Lu, S. (2024). The association between body mass index and bone mineral density in older adults: a cross-sectional study of community population in Beijing. BMC Musculoskelet Disord, 25(655), 1–10. https://doi.org/10.1186/s12891-024-07782-7
Davis, H. M., Pacheco-Costa, R., Atkinson, E. G., Brun, L. R., Gortazar, A. R., Harris, J., Hiasa, M., Bolarinwa, S. A., Yoneda, T., Ivan, M., Bruzzaniti, A., Bellido, T., & Plotkin, L. I. (2017). Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell, 16(3), 551–563. https://doi.org/10.1111/acel.12586
Devlin, M., Brooks, D., Conlon, C., van Vliet, M., Louis, L., Rosen, C., & Bouxsein, M. (2016). Daily leptin blunts marrow fat but does not impact bone mass in calorie restricted mice. J Endocrinol, 229(3), 295–306. https://doi.org/10.1530/JOE-15-0473
Escobio-Prieto, I., Blanco-Díaz, M., Pinero-Pinto, E., Rodriguez-Rodriguez, A. M., Ruiz-Dorantes, F. J., & Albornoz-Cabello, M. (2023). Quantitative ultrasound and bone health in elderly people, a systematic review. Biomedicines, 11(4), 1–13. https://doi.org/10.3390/biomedicines11041175
Fang, J., Gao, J., Gong, H., Zhang, T., Zhang, R., & Zhan, B. (2019). Multiscale experimental study on the effects of different weight-bearing levels during moderate treadmill exercise on bone quality in growing female rats. Biomed Eng Online, 18(1), 1–18. https://doi.org/10.1186/s12938-019-0654-1
Fasihi, L., Tartibian, B., & Eslami, R. (2021). Effects of age on bone mineral density in active men. 7th International Conference on Health, Treatment and Health Promotion, 1–6.
Fassio, A., Idolazzi, L., Rossini, M., Gatti, D., Adami, G., Giollo, A., & Viapiana, O. (2018). The obesity paradox and osteoporosis. Eat Weight Disord, 23(3), 293–302. https://doi.org/10.1007/s40519-018-0505-2
Gomez, J. P., & Tinoco, H. A. (2017). Bone mineral density (BMD). Curr Trends Biomedical Eng & Biosci, 2(1), 1–2. https://doi.org/10.19080/ctbeb.2017.02.555576
Hammad, L. F. (2016). Measurements of bone mineral density and stiffness index in young Saudi females. Pak J Med Sci, 32(2), 399–402. https://doi.org/10.12669/pjms.322.9757
Iantomasi, T., Romagnoli, C., Palmini, G., Donati, S., Falsetti, I., Miglietta, F., Aurilia, C., Marini, F., Giusti, F., & Brandi, M. L. (2023). Oxidative stress and inflammation in osteoporosis: Molecular mechanisms involved and the relationship with microRNAs. Int J Mol Sci, 24(4), 1–18. https://doi.org/10.3390/ijms24043772
Jiao, Y., Sun, J., Li, Y., Zhao, J., & Shen, J. (2023). Association between adiposity and bone mineral density in adults: Insights from a national survey analysis. Nutrients, 15(15), 1–13. https://doi.org/10.3390/nu15153492
Kang, J. H., & Hong, S. W. (2022). Risk factors of frailty in patients with distal radius fractures. Geriatr Orthop Surg Rehabil, 13, 1–8. https://doi.org/10.1177/21514593221094736
Karma, B., Ada-Katrin, B., & Händler-Schuster, D. (2021). Exploring health-related needs of elderly people (70+) at home: A qualitative study from Switzerland. J Prim Care Community Health, 12, 1–7. https://doi.org/10.1177/21501327211055635
Kenkre, J., & Bassett, J. (2018). The bone remodelling cycle. Ann Clin Biochem, 55(3), 308–327. https://doi.org/10.1177/0004563218759371
Khan, A. U., Qu, R., Fan, T., Ouyang, J., & Dai, J. (2020). A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells. Stem Cell Res Ther, 11(283), 1–14. https://doi.org/10.1186/s13287-020-01789-2
Kim, H. S., Jeong, E. S., Yang, M. H., & Yang, S. O. (2018). Bone mineral density assessment for research purpose using dual energy x-ray absorptiometry. Osteoporos Sarcopenia, 4(3), 79–85. https://doi.org/10.1016/j.afos.2018.09.003
Kopiczko, A. (2020). Bone mineral density in old age: The influence of age at menarche, menopause status and habitual past and present physical activity. Arch Med Sci, 16(3), 657–665. https://doi.org/10.5114/aoms.2019.81314
Kranioti, E. F., Bonicelli, A., & García-Donas, J. G. (2019). Bone-mineral density: Clinical significance, methods of quantification and forensic applications. Res Rep Forensic Med Sci, 9, 9–21. https://doi.org/10.2147/rrfms.s164933
Krishnan, A., & Muthusami, S. (2017). Hormonal alterations in PCOS and its influence on bone metabolism. J Endocrinol, 232(2), R99–R113. https://doi.org/10.1530/JOE-16-0405
Krueger, D., Binkley, N., & Morgan, S. (2018). Dual-energy x-ray absorptiometry quality matters. J Clin Densitom, 21(2), 155–156. https://doi.org/10.1016/j.jocd.2017.10.002
Laurent, M. R., Dedeyne, L., Dupont, J., Mellaerts, B., Dejaeger, M., & Gielen, E. (2019). Age-related bone loss and sarcopenia in men. Maturitas, 122, 51–56. https://doi.org/10.1016/j.maturitas.2019.01.006
Levin, V. A., Jiang, X., & Kagan, R. (2018). Estrogen therapy for osteoporosis in the modern era. Osteoporos Int, 29(5), 1049–1055. https://doi.org/10.1007/s00198-018-4414-z
Li, C., Sun, J., & Yu, L. (2022). Diagnostic value of calcaneal quantitative ultrasound in the evaluation of osteoporosis in middle-aged and elderly patients. Medicine, 101(2), 1–6. https://doi.org/10.1097/MD.0000000000028325
Li, Y. (2022). Association between obesity and bone mineral density in middle-aged adults. J Orthop Surg Res, 17, 1–6. https://doi.org/10.1186/s13018-022-03161-x
Ma, M., Feng, Z., Liu, X., Jia, G., Geng, B., & Xia, Y. (2021). The saturation effect of body mass index on bone mineral density for people over 50 years old: A cross-sectional study of the US population. Front Nutr, 8, 1–11. https://doi.org/10.3389/fnut.2021.763677
Majeed, K. G., Thanon, H. A., Dhannoon, B. I., & Fathi, H. B. (2019). The comparison of the total body mass between pre and postmenopausal women in Mosul city. Iraqi J Sci, 60(6), 1197–1205. https://doi.org/10.24996/ijs.2019.60.6.3
Migliorini, F., Maffulli, N., Spiezia, F., Tingart, M., Maria, P. G., & Riccardo, G. (2021). Biomarkers as therapy monitoring for postmenopausal osteoporosis: A systematic review. J Orthop Surg Res, 16(1), 1–10. https://doi.org/10.1186/s13018-021-02474-7
Mohajan, D., & Mohajan, H. K. (2023). Body mass index (BMI) is a popular anthropometric tool to measure obesity among adults. J Innov Med Res, 2(4), 25–33. https://doi.org/10.56397/jimr/2023.04.06
Naser, M. S., Hassan, A. B., Naser, W. S., Almarabheh, A., Abdalla, H. A., Mohamed, S. J., Hasan, S. khalid, & Butt, A. J. (2023). Relationship between bone mineral density and body mass index among patients with diabetes mellitus in Bahrain. Obes Med, 37, 1–9. https://doi.org/10.1016/j.obmed.2022.100472
Nicholson, T. A., Sagmeister, M., Wijesinghe, S. N., Farah, H., Hardy, R. S., & Jones, S. W. (2023). Oligonucleotide therapeutics for age-related musculoskeletal disorders: Successes and challenges. Pharmaceutics, 15(1), 1–19. https://doi.org/10.3390/pharmaceutics15010237
Onuoha, K., Ajiboye, K., Ekwe, K., & Ogedegbe, F. (2023). Effect of body mass index on bone mineral density: A retrospective review. Int J Health Sci Res, 13(5), 11–19. https://doi.org/10.52403/ijhsr.20230502
Pietschmann, P., Mechtcheriakova, D., Meshcheryakova, A., Föger-Samwald, U., & Ellinger, I. (2016). Immunology of osteoporosis: A mini-review. Gerontology, 62(2), 128–137. https://doi.org/10.1159/000431091
Pignolo, R. J., Law, S. F., & Chandra, A. (2021). Bone aging, cellular senescence, and osteoporosis. JBMR Plus, 5(4), 1–14. https://doi.org/10.1002/jbm4.10488
Plotkin, L. I., & Bruzzaniti, A. (2019). Molecular signaling in bone cells: Regulation of cell differentiation and survival. Adv Protein Chem Struct Biol, 116, 237–281. https://doi.org/10.1016/bs.apcsb.2019.01.002
Savvidis, C., Tournis, S., & Dede, A. D. (2018). Obesity and bone metabolism. Hormones, 17(2), 205–217. https://doi.org/10.1007/s42000-018-0018-4
Segheto, K. J., Juvanhol, L. L., de Carvalho, C. J., da Silva, D. C. G., Kakehasi, A. M., & Longo, G. Z. (2020). Factors associated with bone mineral density in adults: A cross-sectional population-based study. Rev Esc Enferm USP, 54(e03572), 1–10. https://doi.org/10.1590/S1980-220X2018039903572
Subramaniam, S., Chan, C. Y., Soelaiman, I. N., Mohamed, N., Muhammad, N., Ahmad, F., Ng, P. Y., Jamil, N. A., Aziz, N. A., & Chin, K. Y. (2020). The performance of a calcaneal quantitative ultrasound device, CM-200, in stratifying osteoporosis risk among Malaysian population aged 40 years and above. Diagnostics, 10(4), 1–13. https://doi.org/10.3390/diagnostics10040178
Tariq, S., Tariq, S., & Lone, K. P. (2017). Relationship of anthropometric measures with bone mineral density in postmenopausal non-osteoporotic, osteopenic and osteoporotic women. J Pak Med Assoc, 67(4), 590–594. https://www.researchgate.net/publication/316157859_Relationship_of_anthropometric_measures_with_bone_mineral_density_in_postmenopausal_non-osteoporotic_osteopenic_and_osteoporotic_women
Thulkar, J., Singh, S., Sharma, S., & Thulkar, T. (2016). Preventable risk factors for osteoporosis in postmenopausal women: Systematic review and meta-analysis. J Midlife Health, 7(3), 108–113. https://doi.org/10.4103/0976-7800.191013
Walsh, J. S., & Vilaca, T. (2017). Obesity, type 2 diabetes and bone in adults. Calcif Tissue Int, 100(5), 528–535. https://doi.org/10.1007/s00223-016-0229-0
Watts, N. B., & Manson, J. E. (2017). Osteoporosis and fracture risk evaluation and management shared decision making in clinical practice. JAMA, 317(3), 253–254. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.panoramaortho.com/wp-content/uploads/2017/06/Osteoporosis-and-Fracture-Risk-Evaluation-and-Management.pdf
Wu, S. F., & Du, X. J. (2016). Body mass index may positively correlate with bone mineral density of lumbar vertebra and femoral neck in postmenopausal females. Med Sci Monit, 22, 145–151. https://doi.org/10.12659/MSM.895512
Xu, Y., Xu, H., Yin, X., Liu, X., Ma, Z., & Zhao, Z. (2021). 17 β-estradiol alleviates oxidative damage in osteoblasts by regulating miR-320/RUNX2 signaling pathway. J Biosci, 46, 1–10. https://doi.org/10.1007/s12038-021-00236-5
Xuan, R., Song, Y., Baker, J. S., & Gu, Y. (2020). The evaluation of bone mineral density based on age and anthropometric parameters in southeast Chinese adults: A cross-sectional study. Med Sci Monit, 26, e923603-1-e923603-7. https://doi.org/10.12659/MSM.923603
Yao, Z., Getting, S. J., & Locke, I. C. (2022). Regulation of TNF-induced osteoclast differentiation. Cells, 11(1), 1–23. https://doi.org/10.3390/cells11010132
Yen, C. C., Lin, W. C., Wang, T. H., Chen, G. F., Chou, D. Y., Lin, D. M., Lin, S. Y., Chan, M. H., Wu, J. M., Tseng, C. D., Huang, Y. J., & Lee, T. F. (2021). Pre-screening for osteoporosis with calcaneus quantitative ultrasound and dual-energy x-ray absorptiometry bone density. Sci Rep, 11(1), 1–10. https://doi.org/10.1038/s41598-021-95261-7
Zhang, Y. Y., Xie, N., Sun, X. D., Nice, E. C., Liou, Y. C., Huang, C., Zhu, H., & Shen, Z. (2024). Insights and implications of sexual dimorphism in osteoporosis. Bone Res, 12(8), 1–30. https://doi.org/10.1038/s41413-023-00306-4
Zhu, J., & March, L. (2022). Treating osteoporosis: Risks and management. Aust Prescr, 45(5), 150–157. https://doi.org/10.18773/austprescr.2022.054
Zierle-Ghosh, A., & Jan, A. (2024). Physiology, body mass index. StatPearls Publishing LLC.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 JKP (Jurnal Kesehatan Primer)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
4.png)









