The potential of Cilembu sweet potato (Ipomoea batatas L.) as a growth medium for Staphylococcus aureus and Escherichia coli

Authors

  • Ari Nuswantoro Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak, West Kalimantan, Indonesia https://orcid.org/0000-0001-9525-393X
  • Merda Sri Rahayu Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak, West Kalimantan, Indonesia
  • Imma Fatayati Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak, West Kalimantan, Indonesia
  • Syopingi Syopingi Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak, West Kalimantan, Indonesia
  • Maretalinia Maretalinia Ph.D. program in Demography, Institute for Population and Social Research, Mahidol University, Phutthamonthon District, Nakhon Pathom, Thailand

DOI:

https://doi.org/10.31965/infokes.Vol22.Iss1.1087

Keywords:

Cilembu Sweet Potato, Staphylococcus aureus, Escherichia coli, Alternative Media

Abstract

The media aims to store, reproduce, and identify bacteria but has disadvantages such as being expensive, containing chemicals, and being easily damaged due to contamination. Therefore we need an alternative media that can overcome these limitations. Cilembu sweet potato (Ipomoea batatas, L.) is a natural ingredient that is easy to obtain and contains sufficient nutrients so it has the potential to be used as a basic ingredient for growth media. The purpose of this study was to determine the potential of Cilembu sweet potato flour as an alternative medium for the growth of Staphylococcus aureus and Escherichia coli bacteria with a quasi-experimental design. Cilembu sweet potato flour is obtained by cleaning, chopping, drying in the oven, crushing with a blender, and sifting the tubers to obtain fairly fine flour. The flour was dissolved in agar and then inoculated with S. aureus and E. coli, each with 16 replications. The results showed that the average number of S. aureus colonies was 119.12 CFU (169.2 CFU in control) while E. coli was 160.56 CFU (221.2 CFU in control). The Mann-Whitney test showed that there was a difference in the number of S. aureus colonies on alternative media and NA (p = 0.006 ≤ 0.05), but there was no difference between the number of E. coli colonies on alternative media and NA (p = 0.057 > 0.05). Finally, there was a difference in the number of S. aureus and E. coli colonies on alternative media (p = 0.04 ≤ 0.05). The nutritional composition shows that Cilembu sweet potato flour has more potential to replace NA as a growth medium for E. coli than for S. aureus.

Downloads

Download data is not yet available.

References

Basavaraju, M., & Gunashree, B. S. (2022). Escherichia coli: an overview of main characteristics. Escherichia coli-Old and New Insights. https://doi.org/10.5772/INTECHOPEN.105508

Bennett, R. W., Hait, J. M., & Tallent, S. M. (2013). Staphylococcus aureus. In Guide to Foodborne Pathogens (pp. 26–44). Wiley. https://doi.org/10.1002/9781118684856.ch2

Bittner, L. M., Arends, J., & Narberhaus, F. (2017). When, how and why? Regulated proteolysis by the essential FtsH protease in Escherichia coli. Biological chemistry, 398(5-6), 625–635. https://doi.org/10.1515/hsz-2016-0302

Bridson, E. Y. (2006). The Oxoid Manual (9th ed.). OXOID Limited. https://firatozel.files.wordpress.com/2011/09/oxoid-manual-9th-edition.pdf

Das, G., Patra, J. K., Basavegowda, N., Vishnuprasad, C. N., & Shin, H. S. (2019). Comparative study on antidiabetic, cytotoxicity, antioxidant and antibacterial properties of biosynthesized silver nanoparticles using outer peels of two varieties of ipomoea batatas (L.) lam. International Journal of Nanomedicine, 14, 4741–4754. https://doi.org/10.2147/IJN.S210517

Eduardo Cartabiano Leite, C., Maria Porcu, O., de Francisco, A., Cartabiano-Leite, C. E., Porcu, O. M., & de Casas, A. F. (2020). Sweet potato (Ipomoea batatas L. Lam) nutritional potential and social relevance: a review. International Journal of Engineering Research and Applications Www.Ijera.Com, 10, 23–40. https://doi.org/10.9790/9622-1006082340

Eduardo, L. G., Ramirez, B. S., Maribel, C. F., Pescador, M. G. N., & Cruz, F. J. M. (2018). Low accuracy of the McFarland method for estimation of bacterial populations. African Journal of Microbiology Research, 12(31), 736–740. https://doi.org/10.5897/AJMR2018.8893

El-Hadedy, D., & Abu El-Nour, S. (2012). Identification of Staphylococcus aureus and Escherichia coli isolated from Egyptian food by conventional and molecular methods. Journal of Genetic Engineering and Biotechnology, 10(1), 129–135. https://doi.org/10.1016/J.JGEB.2012.01.004

Ferreira, M. T., Manso, A. S., Gaspar, P., Pinho, M. G., & Neves, A. R. (2013). Effect of Oxygen on Glucose Metabolism: Utilization of Lactate in Staphylococcus Aureus as Revealed by In Vivo NMR Studies. PLOS ONE, 8(3), e58277. https://doi.org/10.1371/JOURNAL.PONE.0058277

Glover, G., Voliotis, M., Łapińska, U., Invergo, B. M., Soanes, D., O’Neill, P., Moore, K., Nikolic, N., Petrov, P. G., Milner, D. S., Roy, S., Heesom, K., Richards, T. A., Tsaneva-Atanasova, K., & Pagliara, S. (2022). Nutrient and salt depletion synergistically boosts glucose metabolism in individual Escherichia coli cells. Communications Biology 2022 5:1, 5(1), 1–14. https://doi.org/10.1038/s42003-022-03336-6

Gomes, T. A. T., Elias, W. P., Scaletsky, I. C. A., Guth, B. E. C., Rodrigues, J. F., Piazza, R. M. F., Ferreira, L. C. S., & Martinez, M. B. (2016). Diarrheagenic Escherichia coli. Brazilian Journal of Microbiology, 47, 3–30. https://doi.org/10.1016/J.BJM.2016.10.015

Hassuna, N. A., Rabie, E. M., Mahd, W. K. M., Refaie, M. M. M., Yousef, R. K. M., & Abdelraheem, W. M. (2023). Antibacterial effect of vitamin C against uropathogenic E. coli in vitro and in vivo. BMC Microbiology, 23(1). https://doi.org/10.1186/S12866-023-02856-3

Juariah, S. (2021). Media alternatif pertumbuhan Staphylococcus aureus dari biji durian (Durio Zibethinus murr). Meditory: The Journal of Medical Laboratory, 9(1), 19–25. https://doi.org/10.33992/M.V9I1.1400

Kayumov, A. R., Nureeva, A. A., Trizna, E. Y., Gazizova, G. R., Bogachev, M. I., Shtyrlin, N. V., Pugachev, M. V., Sapozhnikov, S. V., & Shtyrlin, Y. G. (2015). New Derivatives of Pyridoxine Exhibit High Antibacterial Activity against Biofilm-Embedded Staphylococcus Cells. BioMed Research International, 2015. https://doi.org/10.1155/2015/890968

Liu, Y. K., Kuo, H. C., Lai, C. H., & Chou, C. C. (2020). Single amino acid utilization for bacterial categorization. Scientific Reports 2020 10:1, 10(1), 1–12. https://doi.org/10.1038/s41598-020-69686-5

Mikkelsen, K., & Apostolopoulos, V. (2019). Vitamin B1, B2, B3, B5, and B6 and the Immune System. Nutrition and Immunity, 115–125. https://doi.org/10.1007/978-3-030-16073-9_7

Minogue, T. D., Daligault, H. A., Davenport, K. W., Bishop-Lilly, K. A., Broomall, S. M., Bruce, D. C., Chain, P. S., Chertkov, O., Coyne, S. R., Freitas, T., Frey, K. G., Gibbons, H. S., Jaissle, J., Redden, C. L., Rosenzweig, C. N., Xu, Y., & Johnson, S. L. (2014). Complete Genome Assembly of Escherichia coli ATCC 25922, a Serotype O6 Reference Strain. Genome Announcements, 2(5), 969–983. https://doi.org/10.1128/GENOMEA.00969-14

Mohanraj, R., & Sivasankar, S. (2014). Sweet potato (Ipomoea batatas [L.] Lam)-A valuable medicinal food: A review. Journal of medicinal food, 17(7), 733-741. https://doi.org/10.1089/JMF.2013.2818

Monk, J. M., Koza, A., Campodonico, M. A., Machado, D., Seoane, J. M., Palsson, B. O., Herrgård, M. J., & Feist, A. M. (2016). Multi-omics Quantification of Species Variation of Escherichia coli Links Molecular Features with Strain Phenotypes. Cell Systems, 3(3), 238-251.e12. https://doi.org/10.1016/J.CELS.2016.08.013

Park, J. Y., & Seo, K. S. (2022). Staphylococcus Aureus. Food Microbiology: Fundamentals and Frontiers, 555–584. https://doi.org/10.1128/9781555819972.ch21

Patricia, V., Hamtini, H., Yani, A., Choirunnisa, A., Ermala, E., & Indriani, I. (2022). Potensi Pemanfaatan Jagung, Kacang Hijau dan Ubi Cilembu Sebagai Media Kultur Bakteri Escherichia Coli. Care : Jurnal Ilmiah Ilmu Kesehatan, 10(3), 460–468. https://doi.org/10.33366/JC.V10I3.2677

Peterson, C. T., Rodionov, D. A., Peterson, S. N., & Osterman, A. L. (2020). B Vitamins and Their Role in Immune Regulation and Cancer. Nutrients 2020, Vol. 12, Page 3380, 12(11), 3380. https://doi.org/10.3390/NU12113380

Putnam, E. E., & Goodman, A. L. (2020). B vitamin acquisition by gut commensal bacteria. PLOS Pathogens, 16(1), e1008208. https://doi.org/10.1371/JOURNAL.PPAT.1008208

Ramachandran, G. (2014). Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence, 5(1), 213-218. https://doi.org/10.4161/VIRU.27024

Razzaq, M., & Askar, M. (2023). Antimicrobial Effect of Vitamin C on Different Strains of E. Coli. World of Science: Journal on Modern Research Methodologies, 2(10), 14–27. https://univerpubl.com/index.php/woscience/article/view/2631

Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor perspectives in biology, 2(5), a000414. https://doi.org/10.1101/CSHPERSPECT.A000414

Sizar, O., & Unakal, C. G. (2022). Gram Positive Bacteria. Management of Antimicrobials in Infectious Diseases, 29–41. https://doi.org/10.1385/1-59259-036-5:29

Tille, P. M. (2022). Bailey & Scott’s Diagnostic Microbiology, 15th Edition (15th ed.). Elsevier. https://evolve.elsevier.com/cs/product/9780323681056?role=student

Tramonti, A., Nardella, C., di Salvo, M. L., Barile, A., D’Alessio, F., de Crécy-Lagard, V., & Contestabile, R. (2021). Knowns and Unknowns of Vitamin B 6 Metabolism in Escherichia coli . EcoSal Plus, 9(2). https://doi.org/10.1128/ECOSALPLUS.ESP-0004-2021/SUPPL_FILE/ESP-0004-2021_SUPP_2_SEQ4.TIF

Vergalito, F., Pietrangelo, L., Petronio Petronio, G., Colitto, F., Alfio Cutuli, M., Magnifico, I., Venditti, N., Guerra, G., & Di Marco, R. (2020). Vitamin E for prevention of biofilm-caused Healthcare-associated infections. Open Medicine (Poland), 15(1), 14–21. https://doi.org/10.1515/MED-2020-0004/ASSET/GRAPHIC/J_MED-2020-0004_FIG_002.JPG

Yehia, H. M., Al-Masoud, A. H., Alarjani, K. M., & Alamri, M. S. (2020). Prevalence of methicillin-resistant (mecA gene) and heat-resistant Staphylococcus aureus strains in pasteurized camel milk. Journal of Dairy Science, 103(7), 5947–5963. https://doi.org/10.3168/JDS.2019-17631

Zühlke, D., Dörries, K., Bernhardt, J., Maaß, S., Muntel, J., Liebscher, V., Pané-Farré, J., Riedel, K., Lalk, M., Völker, U., Engelmann, S., Becher, D., Fuchs, S., & Hecker, M. (2016). Costs of life - Dynamics of the protein inventory of Staphylococcus aureus during anaerobiosis. Scientific Reports 2016 6:1, 6(1), 1–13. https://doi.org/10.1038/srep28172

Downloads

Published

2024-03-31

How to Cite

Nuswantoro, A., Rahayu, M. S., Fatayati, I., Syopingi, S., & Maretalinia, M. (2024). The potential of Cilembu sweet potato (Ipomoea batatas L.) as a growth medium for Staphylococcus aureus and Escherichia coli. JURNAL INFO KESEHATAN, 22(1), 146–154. https://doi.org/10.31965/infokes.Vol22.Iss1.1087

Issue

Section

Original Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.