Effect of The Temperature on The Size of Inhibition Zone of the Clindamycin, Levofloxacin, Tetracycline, and Trimethoprim Activity Against Staphylococcus aureus ATCC 25923

Authors

  • Sistiyono Sistiyono Department of Medical Laboratory Technology, Poltekkes Kemenkes Yogyakarta, Yogyakarta, Indonesia
  • Marta Atik Martsiningsih Department of Medical Laboratory Technology, Poltekkes Kemenkes Yogyakarta, Yogyakarta, Indonesia
  • Menik Kasiyati Department of Medical Laboratory Technology, Poltekkes Kemenkes Yogyakarta, Yogyakarta, Indonesia
  • Muji Rahayu Department of Medical Laboratory Technology, Poltekkes Kemenkes Yogyakarta, Yogyakarta, Indonesia
  • Rita Rena Pudyastuti Department of Medical Laboratory Technology, Poltekkes Kemenkes Yogyakarta, Yogyakarta, Indonesia
  • Suyana Suyana Department of Medical Laboratory Technology, Poltekkes Kemenkes Yogyakarta, Yogyakarta, Indonesia
  • Ully Rahmawati Department of Medical Laboratory Technology, Poltekkes Kemenkes Yogyakarta, Yogyakarta, Indonesia
  • Rahmad UPTD Health Laboratory of East Kalimantan Province, Indonesia
  • Zulfikar Husni Faruq Department of Medical Laboratory Technology, Poltekkes Kemenkes Yogyakarta, Yogyakarta, Indonesia
  • Budi Setiawan Department of Medical Laboratory Technology, Poltekkes Kemenkes Yogyakarta, Yogyakarta, Indonesia

DOI:

https://doi.org/10.31965/infokes.Vol22.Iss3.1353

Keywords:

Incubation Temperature, Inhibition Zone, Sensitivity Test, Disk Diffusion

Abstract

Antibiotic sensitivity should be tested. In the sensitivity test, there are technical factors that influence the formation of the inhibition zone diameter. Based on several research one of the technical factors that affect the diameter of the inhibition in the disc diffusion method is the temperature incubation of the media, this must be examined so that it can be controlled to ensure the validity of the sensitivity test results. This study aims to determine the mean, difference, and analyze the diameter of the inhibition zone of the antibiotics namely Clindamycin, Levofloxacin, Tetracycline, and Trimethoprim against Staphylococcus aureus on Mueller-Hinton agar media with incubation temperatures of 33°C, 34°C, 35°C, 36°C and 37°C for 18 hours. This research is observational, with a cross-sectional design. The data used are primary data with 100 data on the diameter of the antibiotic inhibition zone, obtained by measuring the diameter of the inhibition zone with different incubation temperatures. The selection of antibiotics is based on the mechanism of action of antibiotics inhibiting bacteria namely, the cell wall or membranes that surrounds the bacterial cell; the machineries that make the nucleic acids DNA and RNA and the machinery that produce proteins (the ribosome and associated proteins) with a range of inhibition zones based on Internal Quality Control CLSI. The data will be processed univariately and the Repeated Measure statistical test to determine the significance of the difference in the diameter of the formed inhibition zone using the ANOVA test. The results of the measurement of the inhibition zone diameter on the incubation temperature variation showed a significant difference with p-value 0.000 for Levofloxacin, Tetracycline and Trimethoprim, while for p-value Clindamycin is 0.010. Levofloxacin, Tetracycline, and Trimethoprim antibiotics, the higher the incubation temperature, the average diameter of the inhibition zone is smaller, while for Clindamycin the higher the incubation temperature, the higher the average diameter of the inhibition zone is the same. There is an effect of incubation temperature volume on the diameter of the antibiotic inhibition zone in the disc diffusion method antibiotic sensitivity test. The research indicates that incubation temperature affects the diameter of the antibiotic inhibition zone in disc diffusion tests, underscoring the need for standardized and precise testing conditions to ensure accurate and reliable antibiotic sensitivity results. 

Downloads

Download data is not yet available.

References

Coleman, D., Waddell, S. J., & Mitchison, D. A. (2011). Effects of low incubation temperatures on the bactericidal activity of anti-tuberculosis drugs. Journal of Antimicrobial Chemotherapy, 66(1), 146–150. https://doi.org/10.1093/jac/dkq414

Fanayoni, A., Gelgel, K. T. P., & Suarjana, I. G. K. (2019). Uji Sensitivitas Bakteri Staphylococcus sp. asal Babi Penderita Porcine Respiratory Disease Complex terhadap Doxycycline, Kanamycin, dan Clindamycin. Jurnal Indonesia Medicus Veterinus, 8(4), 439-445.

Goyat, R., Singh, J., Umar, A., Saharan, Y., Kumar, V., Algadi, H., Akbar, S., & Baskoutas, S. (2022). Modified low-temperature synthesis of graphene oxide nanosheets: Enhanced adsorption, antibacterial and antioxidant properties. Environmental Research, 215, 114245. https://doi.org/10.1016/j.envres.2022.114245

Hong, S. K., Choi, S. J., Shin, S., Lee, W., Pinto, N., Shin, N., Lee, K., Hong, S. G., Kim, Y. A., Lee, H., Kim, H., Song, W., Lee, S. H., Yong, D., Lee, K., & Chong, Y. (2015). Establishing Quality Control Ranges for Antimicrobial Susceptibility Testing of Escherichia coli, Pseudomonas aeruginosa , and Staphylococcus aureus: A Cornerstone to Develop Reference Strains for Korean Clinical Microbiology Laboratories. Annals of Laboratory Medicine, 35(6), 635–638. https://doi.org/10.3343/alm.2015.35.6.635

Hudzicki, J. (2009). Kirby-Bauer disk diffusion susceptibility test protocol. American Society for Microbiology, 15(1), 1–23.

Jenul, C., & Horswill, A. R. (2019). Regulation of Staphylococcus aureus virulence. Microbiology spectrum, 7(2), 10.1128. https://doi.org/10.1128/microbiolspec.GPP3-0031-2018

Karimela, E. J., Ijong, F. G., & Dien, H. A. (2017). Characteristics of Staphylococcus aureus Isolated Smoked Fish Pinekuhe from Traditionally Processed from Sangihe District. Jurnal Pengolahan Hasil Perikanan Indonesia, 20(1), 188. https://doi.org/10.17844/jphpi.v20i1.16506

Khan, M. S., Yang, C., Pan, H., Yang, K., & Zhao, Y. (2022). The effect of high temperature aging on the corrosion resistance, mechanical property and antibacterial activity of Cu-2205 DSS. Colloids and Surfaces B: Biointerfaces, 211, 112309. https://doi.org/10.1016/j.colsurfb.2021.112309

Kuvarina, A. E., Roshka, Yu. A., Rogozhin, E. A., Nikitin, D. A., Kurakov, A. V., & Sadykova, V. S. (2022). Antimicrobial Properties and the Effect of Temperature on the Formation of Secondary Metabolites in Psychrophilic Micromycetes. Applied Biochemistry and Microbiology, 58(3), 243–250. https://doi.org/10.1134/S0003683822030085

Leboffe, M. J., & Pierce, B. E. (2019). Microbiology: Laboratory Theory and Application, Essentials. Morton Publishing Company. https://books.google.co.id/books?id=8ZOFDwAAQBAJ

Lenggu, C. K. L., Indriarini, D., & Amat, A. L. S. (2020). Uji Aktivitas Ekstrak Etanol Kulit Daging Buah Lontar (Borassus Flabellifer Linn) Terhadap Pertumbuhan Escherichia Coli Secarain Virto. Cendana Medical Journal, 8(2), 96-107. https://doi.org/doi.org/10.35508/cmj.v8i2.3353

Li, W., Zhang, Y., Ding, J., Zhang, S., Hu, T., Li, S., An, X., Ren, Y., Fu, Q., Jiang, X., & Li, X. (2022). Temperature-triggered fluorocopolymer aggregate coating switching from antibacterial to antifouling and superhydrophobic hemostasis. Colloids and Surfaces B: Biointerfaces, 215, 112496. https://doi.org/10.1016/j.colsurfb.2022.112496

Lusher, P., Denyer, S. P., & Hugo, W. B. (1984). A note on the effect of dilution and temperature on the bactericidal activity of potassium sorbate. Journal of Applied Bacteriology, 57(1), 179–181. https://doi.org/10.1111/j.1365-2672.1984.tb02372.x

Murray, P. R., Rosenthal, K. S., & Pfaller, M. A. (2021). Medical microbiology (Ninth edition). Elsevier.

Nadjamuddin, M. (2023). Pengantar Bakteriologi (1st ed.). Eureka Media Aksara.

Notoatmodjo, S. (2005). Metodologi penelitian kesehatan. Jakarta: Rineka Cipta.

Novard, M. F. A., Suharti, N., & Rasyid, R. (2019). Gambaran Bakteri Penyebab Infeksi Pada Anak Berdasarkan Jenis Spesimen dan Pola Resistensinya di Laboratorium RSUP Dr. M. Djamil Padang Tahun 2014-2016. Jurnal Kesehatan Andalas, 8(2S), 26. https://doi.org/10.25077/jka.v8i2S.955

Parte, A. C., & Smith, J. T. (1994). Effects of temperature on the bactericidal activities of ciprofloxacin and levofloxacin against Staphylococcus aureus and Staphylococcus epidermidis. Microbios, 79(319), 87–95.

Pelczar, M. J. (2008). Dasar-dasar mikrobiologi. Penerbit Universitas Indonesia.

Perdana, R., & Setyawati, T. (n.d.). Uji in-vitro sensitivitas antibiotik terhadap bakteri Salmonella Typhi di Kota Palu. Medika Tadulako: Jurnal Ilmiah Kedokteran Fakultas Kedokteran Dan Ilmu Kesehatan, 3(1), 11–22.

Riedel, S., Hobden, J. A., Miller, S., Morse, S. A., Mietzner, T. A., Jawetz, E., Melnick, J. L., & Adelberg, E. A. (Eds.). (2019). Jawetz, Melnick & Adelberg’s Medical Microbiology (28th edition). McGraw Hill.

Ronzetti, M., Baljinnyam, B., Jalal, I., Pal, U., & Simeonov, A. (2022). Application of biophysical methods for improved protein production and characterization: A case study on an high‐temperature requirement A‐family bacterial protease. Protein Science, 31(12), e4498. https://doi.org/10.1002/pro.4498

Siregar, M. T., Wulan, W. S., Setiawan, D., & Nuryati, An. (2018). Kendali Mutu. Buku Ajar Teknologi Laboratorium Medik (TLM), Kemenkes RI, Jakarta.

Smith, P., Finnegan, W., Ngo, T., & Kronvall, G. (2018). Influence of incubation temperature and time on the precision of MIC and disc diffusion antimicrobial susceptibility test data. Aquaculture, 490, 19–24. https://doi.org/10.1016/j.aquaculture.2018.02.020

Songnaka, N., Nisoa, M., Atipairin, A., Wanganuttara, T., & Chinnawong, T. (2022). Enhanced Antibacterial Activity of Brevibacillus sp. SPR19 by Atmospheric and Room Temperature Plasma Mutagenesis (ARTP). Scientia Pharmaceutica, 90(2), 23. https://doi.org/10.3390/scipharm90020023

Sun, R., Vermeulen, A., & Devlieghere, F. (2021). Modeling the combined effect of temperature, pH, acetic and lactic acid concentrations on the growth/no growth interface of acid-tolerant Bacillus spores. International Journal of Food Microbiology, 360, 109419. https://doi.org/10.1016/j.ijfoodmicro.2021.109419

Toy, E. C. (Ed.). (2008). Case files: Microbiology: [50 clinical cases with USMLE-style questions help you ace course exams and the boards, microbiology pearls highlight key points, primer teaches you how to approach clinical problems, proven learning system maximizes shelf exam scores] (2nd ed). McGraw-Hill Medical.

Willey, J. M., Sherwood, L., & Woolverton, C. J. (2017). Prescott’s microbiology (Tenth edition). McGraw-Hill.

Winarwi, W. (2006). Uji Viabilitas Bakteri dan Aktivitas Enzim Bakteri Proteolitik pada Media Carrier Bekatul (sebagai Acuan Bahan Ajar Pokok Bahasan Virus, Monera, Protista di SMA) [Skripsi]. Universitas Sebelas Maret.

Yoon, J. Y., Yeom, W., Kim, H., Beuchat, L. R., & Ryu, J.-H. (2022). Effects of temperature, pH and sodium chloride on antimicrobial activity of magnesium oxide nanoparticles against E. coli O157:H7. Journal of Applied Microbiology, 133(4), 2474–2483. https://doi.org/10.1111/jam.15719

Zhang, Y., Zhao, X., Wang, H., Fu, S., Lv, X., He, Q., Liu, R., Ji, F., & Xu, X. (2022). Effect of Temperature on the Adhesion and Bactericidal Activities of Ag+-Doped BiVO4 Ceramic Tiles. Inorganics, 10(5), 61. https://doi.org/10.3390/inorganics10050061

Zimmer, B., & et all. (2020). Performance Standards for Antimicrobial Disk Susceptibility Tests (12th ed.). Clinical and Laboratory Standards Institute.

Downloads

Published

2024-09-30

How to Cite

Sistiyono, S., Martsiningsih, M. A., Kasiyati, M., Rahayu, M., Pudyastuti, R. R., Suyana, S., … Setiawan, B. (2024). Effect of The Temperature on The Size of Inhibition Zone of the Clindamycin, Levofloxacin, Tetracycline, and Trimethoprim Activity Against Staphylococcus aureus ATCC 25923. JURNAL INFO KESEHATAN, 22(3), 481–493. https://doi.org/10.31965/infokes.Vol22.Iss3.1353

Issue

Section

Original Articles

Most read articles by the same author(s)

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.