The Effect of Black Cumin (Nigella Sativa) on Breastfeeding Mothers

Authors

  • Rabia Zakaria Department of Midwifery, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo City, Gorontalo Province, Indonesia
  • Siti Choirul Dwi Astuti Department of Midwifery, Politeknik Kesehatan Kementerian Kesehatan Gorontalo, Gorontalo City, Gorontalo Province, Indonesia

DOI:

https://doi.org/10.31965/infokes.Vol20.Iss1.627

Keywords:

Black cumin, Breastfeeding, Nigella Sativa

Abstract

Breast milk is the best nutrient to reduce the pain in nursing mothers and death in infants. However, for nursing mothers, too little milk volume is the cause of problems occurring during the breastfeeding process. Thus, mothers who breastfeed should consume foods that can increase the breast milk volume. One food frequently consumed by mothers to increase breast milk is honey. In fact, natural honey is challenging to discover, and the price is also high which makes it as an obstacle. A more economical alternative is required, one of which is black cumin. It is easy to obtain and the price is also affordable. Black cumin also contains galactagogue to increase prolactin that influences breast milk production. The objective of this study is to identify the effect of black cumin on the volume of breast milk. The study was a randomized controlled trial involving 60 breastfeeding mothers divided into intervention groups and control groups. The intervention group was provided 15 grams of black cumin brewed with 1000C boiling water as much as 200 ml, and the control group was assigned 15 grams of pure honey brewed boiling 1000C as much as 200 ml. Intervention and control were administered on the second day to the day of completion after giving birth. They were measuring instruments which accustomed to measure breast milk pumps. Bivariate analysis employing the Wilcoxon and Mann Whitney tests presented a significant difference between the volume of breast milk (p = 0.001) of the control and intervention groups. This study recommends the application of black cumin as a strategy to increase the volume of breast milk in nursing mothers.

Downloads

Download data is not yet available.

References

Abbass-Dick, J., Brown, H. K., Jackson, K. T., Rempel, L., & Dennis, C. L. (2019). Perinatal breastfeeding interventions including fathers/partners: A systematic review of the literature. Midwifery, 75, 41–51. https://doi.org/10.1016/j.midw.2019.04.001 DOI: https://doi.org/10.1016/j.midw.2019.04.001

Abd-elkareem, M., Soliman, M., El-rahman, M. A. M. A., & Abou, N. S. (2022). The protective effect of Nigella sativa seeds against monosodium glutamate-induced hepatic dysfunction in rats. Toxicology Reports, 9, 147–153. https://doi.org/10.1016/j.toxrep.2022.01.014 DOI: https://doi.org/10.1016/j.toxrep.2022.01.014

Adıyaman, M. Ş., Adıyaman, Ö. A., Dağlı, A. F., Karahan, M. Z., & Dağlı, M. N. (2022). Prevention of doxorubicin-induced experimental cardiotoxicity by Nigella sativa in rats. Revista Portuguesa de Cardiologia, 41(2), 99–105. https://doi.org/10.1016/j.repc.2020.12.015 DOI: https://doi.org/10.1016/j.repc.2020.12.015

Alkhalaf, M. I., Hussein, R. H., & Hamza, A. (2020). Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi Journal of Biological Sciences, 27(9), 2410–2419. https://doi.org/10.1016/j.sjbs.2020.05.005 DOI: https://doi.org/10.1016/j.sjbs.2020.05.005

Alkis, H., Demir, E., Taysi, M. R., Sagir, S., & Taysi, S. (2021). Effects of Nigella sativa oil and thymoquinone on radiation-induced oxidative stress in kidney tissue of rats. Biomedicine and Pharmacotherapy, 139, 111540. https://doi.org/10.1016/j.biopha.2021.111540 DOI: https://doi.org/10.1016/j.biopha.2021.111540

Amelina, I. (2019). Pengaruh Pemberian Jintan Hitam (Nigella sativa l.) terhadap Produksi ASI pada Ibu Nifas Primipara Hari ke 205 di PMB Agnes Ernawati S.Tr Keb, Ketawang Kecamatan Gondanglegi, Kabupaten Malang. Diploma (D3) Thesis. Politeknik Kesehatan RS dr. Soepraoen Malang.

Arbour, M. C., Mackrain, M., Fitzgerald, E., & Atwood, S. (2019). National Quality Improvement Initiative in Home Visiting Services Improves Breastfeeding Initiation and Duration. Academic Pediatrics, 19(2), 236–244. https://doi.org/10.1016/j.acap.2018.11.005 DOI: https://doi.org/10.1016/j.acap.2018.11.005

Beyene, G. M., Azale, T., Gelaye, K. A., & Ayele, T. A. (2022). Effect of antenatal depression on the initiation of breastfeeding in South Gondar zone, Northwest Ethiopia: A population-based prospective cohort study. Heliyon, 8(1), e08759. https://doi.org/10.1016/j.heliyon.2022.e08759 DOI: https://doi.org/10.1016/j.heliyon.2022.e08759

Branger, B., Camelot, F., Droz, D., Houbiers, B., Marchalot, A., Bruel, H., Laczny, E., & Clement, C. (2019). Breastfeeding and early childhood caries. Review of the literature, recommendations, and prevention. Archives de Pediatrie, 26(8), 497–503. https://doi.org/10.1016/j.arcped.2019.10.004 DOI: https://doi.org/10.1016/j.arcped.2019.10.004

Bucher, M. K., & Spatz, D. L. (2019). Ten-Year Systematic Review of Sexuality and Breastfeeding in Medicine, Psychology, and Gender Studies. Nursing for Women’s Health, 23(6), 494–507. https://doi.org/10.1016/j.nwh.2019.09.006 DOI: https://doi.org/10.1016/j.nwh.2019.09.006

Buckingham, A., Kenneson, A., & Singh, R. H. (2022). Breastfeeding practices for infants with inherited metabolic disorders: A survey of registered dietitians in the United States and Canada. Molecular Genetics and Metabolism Reports, 31, 100865. https://doi.org/10.1016/j.ymgmr.2022.100865 DOI: https://doi.org/10.1016/j.ymgmr.2022.100865

Budiati, T., & Setyowati. (2019). The influence culture and maternal care on exclusive breastfeeding practice in post caesarean section mothers. Enfermeria Clinica, 29, 808–814. https://doi.org/10.1016/j.enfcli.2019.04.121 DOI: https://doi.org/10.1016/j.enfcli.2019.04.121

Ciesielska-figlon, K., Lisowska, K. A., Mikosik-Roczynska, A., & Witkowski, J. M. (2021). Nigella sativa oil inhibits proliferation and stimulates apoptosis of human lymphocytes in vitro. Human Immunology, 82(8), 608–614. https://doi.org/10.1016/j.humimm.2021.04.010 DOI: https://doi.org/10.1016/j.humimm.2021.04.010

Cohen, S. S., Alexander, D. D., Krebs, N. F., Young, B. E., Cabana, M. D., Erdmann, P., ... & Saavedra, J. M.. (2018). Factors Associated with Breastfeeding Initiation and Continuation: A Meta-Analysis. Journal of Pediatrics, 203, 190-196. https://doi.org/10.1016/j.jpeds.2018.08.008 DOI: https://doi.org/10.1016/j.jpeds.2018.08.008

Davra, K., Chavda, P., Pandya, C., Dave, D., & Mehta, K. (2022). Breastfeeding position and attachment practices among lactating mothers: An urban community-based cross-sectional study from Vadodara city in western India. Clinical Epidemiology and Global Health, 15, 101009. https://doi.org/10.1016/j.cegh.2022.101009 DOI: https://doi.org/10.1016/j.cegh.2022.101009

Deniz, F. (2022). Green purification of heavy metal pollution from aquatic environment by biorefinery waste biomass of Nigella sativa L.: A novel and effective treatment agent. Environmental Technology and Innovation, 25, 102118. https://doi.org/10.1016/j.eti.2021.102118 DOI: https://doi.org/10.1016/j.eti.2021.102118

Douglas, P., & Geddes, D. (2018). Practice-based interpretation of ultrasound studies leads the way to more effective clinical support and less pharmaceutical and surgical intervention for breastfeeding infants. Midwifery, 58, 145–155. https://doi.org/10.1016/j.midw.2017.12.007 DOI: https://doi.org/10.1016/j.midw.2017.12.007

Esharkawy, E. R., Almalki, F., & Hadda, T. B. (2022). In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorganic Chemistry, 120, 105587. https://doi.org/10.1016/j.bioorg.2021.105587 DOI: https://doi.org/10.1016/j.bioorg.2021.105587

Esmail, M., Anwar, S., Kandeil, M., El-Zanaty, A. M., & Abdel-Gabbar, M. (2021). Effect of Nigella sativa, atorvastatin, or L-Carnitine on high fat diet-induced obesity in adult male Albino rats. Biomedicine and Pharmacotherapy, 141, 111818. https://doi.org/10.1016/j.biopha.2021.111818 DOI: https://doi.org/10.1016/j.biopha.2021.111818

Essa, A. R., Browne, E. P., Punska, E. C., Perkins, K., Boudreau, E., Wiggins, H., ... & Arcaro, K. F. (2018). Dietary Intervention to Increase Fruit and Vegetable Consumption in Breastfeeding Women: A Pilot Randomized Trial Measuring Inflammatory Markers in Breast Milk. Journal of the Academy of Nutrition and Dietetics, 118(12), 2287–2295. https://doi.org/10.1016/j.jand.2018.06.015 DOI: https://doi.org/10.1016/j.jand.2018.06.015

Fan, H. S. L., Wong, J. Y. H., Fong, D. Y. T., Lok, K. Y. W., & Tarrant, M. (2019). Breastfeeding outcomes among early-term and full-term infants. Midwifery, 71, 71–76. https://doi.org/10.1016/j.midw.2019.01.005 DOI: https://doi.org/10.1016/j.midw.2019.01.005

Fatimah, F., Massi, M. N., Febriani, A. D. B., Hatta, M., Permatasari, T. A. E., Hidayati, ... & Anggraini, R. P. (2021). Effect of breastfeeding on children’s health and its relationship to NRAMP1 expression: A cross-sectional study. Annals of Medicine and Surgery, 71, 103017. https://doi.org/10.1016/j.amsu.2021.103017 DOI: https://doi.org/10.1016/j.amsu.2021.103017

Flood, M., Pollock, W., McDonald, S., Cullinane, F., & Davey, M.-A. (2019). Primary postpartum haemorrhage, breastfeeding initiation and formula use for confinements in Victoria. Women and Birth, 32, S14. https://doi.org/10.1016/j.wombi.2019.07.192 DOI: https://doi.org/10.1016/j.wombi.2019.07.192

Forster, D. A., McLardie-Hore, F. E., McLachlan, H. L., Davey, M. A., Grimes, H. A., Dennis, C. L., ... & Amir, L. H. (2019). Proactive Peer (Mother-to-Mother) Breastfeeding Support by Telephone (Ringing Up About Breastfeeding Early [RUBY]): A Multicentre, Unblinded, Randomised Controlled Trial. EClinicalMedicine, 8, 20–28. https://doi.org/10.1016/j.eclinm.2019.02.003 DOI: https://doi.org/10.1016/j.eclinm.2019.02.003

Gnanasekaran, P., Roy, A., Natesh, N. S., Raman, V., Ganapathy, P., & Arumugam, M. K. (2021). Removal of microbial pathogens and anticancer activity of synthesized nano-thymoquinone from Nigella sativa seeds. Environmental Technology & Innovation, 24, 102068. https://doi.org/10.1016/j.eti.2021.102068 DOI: https://doi.org/10.1016/j.eti.2021.102068

Habibi, M., Laamiri, F. Z., Aguenaou, H., Doukkali, L., Mrabet, M., & Barkat, A. (2018). The impact of maternal socio-demographic characteristics on breastfeeding knowledge and practices: An experience from Casablanca, Morocco. International Journal of Pediatrics and Adolescent Medicine, 5(2), 39–48. https://doi.org/10.1016/j.ijpam.2018.01.003 DOI: https://doi.org/10.1016/j.ijpam.2018.01.003

Hamze, L., Mao, J., & Reifsnider, E. (2019). Knowledge and attitudes towards breastfeeding practices: A cross-sectional survey of postnatal mothers in China. Midwifery, 74, 68–75. https://doi.org/10.1016/j.midw.2019.03.009 DOI: https://doi.org/10.1016/j.midw.2019.03.009

Hikmah, Z., Endaryanto, A., Ugrasena, I. D. G., Rahaju, A. S., & Arifin, S. (2022). Nigella sativa L. as immunomodulator and preventive effect on renal tissue damage of lupus mice induced by pristane. Heliyon, 8(4), e09242. https://doi.org/10.1016/j.heliyon.2022.e09242 DOI: https://doi.org/10.1016/j.heliyon.2022.e09242

Hossain, M. S., Sharfaraz, A., Dutta, A., Ahsan, A., Masud, M. A., Ahmed, I. A., ... & Ming, L. C. (2021). A review of ethnobotany, phytochemistry, antimicrobial pharmacology and toxicology of Nigella sativa L. Biomedicine and Pharmacotherapy, 143, 112182. https://doi.org/10.1016/j.biopha.2021.112182 DOI: https://doi.org/10.1016/j.biopha.2021.112182

Jefferson, U. T., & Bibb, D. (2019). A Breastfeeding Algorithm to Guide Bedside Health Care Practice for Term Newborns. Nursing for Women’s Health, 23(1), 49–58. https://doi.org/10.1016/j.nwh.2018.11.003 DOI: https://doi.org/10.1016/j.nwh.2018.11.003

Kabir, Y., Akasaka-Hashimoto, Y., Kubota, K., & Komai, M. (2020). Volatile compounds of black cumin (Nigella sativa L.) seeds cultivated in Bangladesh and India. Heliyon, 6(10), e05343. https://doi.org/10.1016/j.heliyon.2020.e05343 DOI: https://doi.org/10.1016/j.heliyon.2020.e05343

Khazdair, M. R., Gholamnezhad, Z., Rezaee, R., & Boskabady, M. H. (2021). A qualitative and quantitative comparison of Crocus sativus and Nigella sativa immunomodulatory effects. Biomedicine and Pharmacotherapy, 140, 111774. https://doi.org/10.1016/j.biopha.2021.111774 DOI: https://doi.org/10.1016/j.biopha.2021.111774

Khodabakhsh, M., Khorrampajouh, H., & Feyzabadi, Z. (2017). Reducing the incidence of cancer using herbal medicines. Journal of Cellular Immunotherapy, 3(1), 21. https://doi.org/10.1016/j.jocit.2017.04.030 DOI: https://doi.org/10.1016/j.jocit.2017.04.030

Leisegang, K., Almaghrawi, W., & Henkel, R. (2021). The effect of Nigella sativa oil and metformin on male seminal parameters and testosterone in Wistar rats exposed to an obesogenic diet. Biomedicine and Pharmacotherapy, 133, 111085. https://doi.org/10.1016/j.biopha.2020.111085 DOI: https://doi.org/10.1016/j.biopha.2020.111085

Lojander, J., Axelin, A., Bergman, P., & Niela-Vilén, H. (2022). Maternal perceptions of breastfeeding support in a birth hospital before and after designation to the Baby-Friendly Hospital Initiative: A quasi-experimental study. Midwifery, 110, 103350. https://doi.org/10.1016/j.midw.2022.103350 DOI: https://doi.org/10.1016/j.midw.2022.103350

Mandey, J. S., Sompie, F. N., Rustandi, & Pontoh, C. J. (2015). Effects of Gedi Leaves (Abelmoschus manihot (L.) Medik) as a Herbal Plant Rich in Mucilages on Blood Lipid Profiles and Carcass Quality of Broiler Chickens as Functional Food. Procedia Food Science, 3, 132–136. https://doi.org/10.1016/j.profoo.2015.01.013 DOI: https://doi.org/10.1016/j.profoo.2015.01.013

Mehlsen, A., Høllund, L., Boye, H., Frederiksen, H., Andersson, A. M., Bruun, S., Husby, S., Jensen, T. K., & Timmermann, C. A. G. (2022). Pregnancy exposure to bisphenol A and duration of breastfeeding. Environmental Research, 206, 112471. https://doi.org/10.1016/j.envres.2021.112471 DOI: https://doi.org/10.1016/j.envres.2021.112471

Mir, S. A., Firoz, A., Alaidarous, M., Alshehri, B., Dukhyil, A. A. B., Banawas, S., ... & Abdel-Hadi, A. M. (2022). Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi Journal of Biological Sciences, 29(1), 394–401. https://doi.org/10.1016/j.sjbs.2021.09.002 DOI: https://doi.org/10.1016/j.sjbs.2021.09.002

Nielsen, C., Li, Y., Lewandowski, M., Fletcher, T., & Jakobsson, K. (2022). Breastfeeding initiation and duration after high exposure to perfluoroalkyl substances through contaminated drinking water: A cohort study from Ronneby, Sweden. Environmental Research, 207, 112206. https://doi.org/10.1016/j.envres.2021.112206 DOI: https://doi.org/10.1016/j.envres.2021.112206

Nomura, K., Kido, M., Tanabe, A., & Ando, K. (2019). Prepregnancy obesity as a risk factor for exclusive breastfeeding initiation in Japanese women. Nutrition, 62, 93–99. https://doi.org/10.1016/j.nut.2018.11.003 DOI: https://doi.org/10.1016/j.nut.2018.11.003

Ohlendorf, J. M., Robinson, K., & Garnier-Villarreal, M. (2019). The impact of maternal BMI, gestational weight gain, and breastfeeding on early childhood weight: Analysis of a statewide WIC dataset. Preventive Medicine, 118, 210–215. https://doi.org/10.1016/j.ypmed.2018.11.001 DOI: https://doi.org/10.1016/j.ypmed.2018.11.001

Pattison, K. L., Kraschnewski, J. L., Lehman, E., Savage, J. S., Downs, D. S., Leonard, K. S., ... & Kjerulff, K. H. (2019). Breastfeeding initiation and duration and child health outcomes in the first baby study. Preventive Medicine, 118, 1–6. https://doi.org/10.1016/j.ypmed.2018.09.020 DOI: https://doi.org/10.1016/j.ypmed.2018.09.020

Ritonga, I., Mulianda, R. T., & Indrayan, M. (2017). Pengaruh jintan hitam terhadap kelancaran produksi asi pada ibu menyusui di kelurahan indra kasih kecamatan medan tembung tahun 2017. Jurnal Ilmiah Kebidanan, 3(2), 279–283.

Safi, S., Razmpoosh, E., Fallahzadeh, H., Mazaheri, M., Abdollahi, N., Nazari, M., ... & Salehi-Abargouei, A. (2021). The effect of Nigella sativa on appetite, anthropometric and body composition indices among overweight and obese women: A crossover, double-blind, placebo-controlled, randomized clinical trial. Complementary Therapies in Medicine, 57, 102653. https://doi.org/10.1016/j.ctim.2020.102653 DOI: https://doi.org/10.1016/j.ctim.2020.102653

Schindler-Ruwisch, J., Roess, A., Robert, R. C., Napolitano, M., Woody, E., Thompson, P., & Ilakkuvan, V. (2019). Determinants of Breastfeeding Initiation and Duration Among African American DC WIC Recipients: Perspectives of Recent Mothers. Women’s Health Issues, 29(6), 513–521. https://doi.org/10.1016/j.whi.2019.07.003 DOI: https://doi.org/10.1016/j.whi.2019.07.003

Segura, S. A. (2022). The challenges of breastfeeding in a complex world. In Anales de pediatria, 96(4), pp. 283-285. https://doi.org/10.1016/j.anpede.2022.01.003 DOI: https://doi.org/10.1016/j.anpede.2022.01.003

Shlafer, R. J., Davis, L., Hindt, L. A., Goshin, L. S., & Gerrity, E. (2018). Intention and Initiation of Breastfeeding Among Women Who Are Incarcerated. Nursing for Women’s Health, 22(1), 64–78. https://doi.org/10.1016/j.nwh.2017.12.004 DOI: https://doi.org/10.1016/j.nwh.2017.12.004

Susiloretni, K. A., Hadi, H., Blakstad, M. M., Smith, E. R., & Shankar, A. H. (2019). Does exclusive breastfeeding relate to the longer duration of breastfeeding? A prospective cohort study. Midwifery, 69, 163–171. https://doi.org/10.1016/j.midw.2018.11.008 DOI: https://doi.org/10.1016/j.midw.2018.11.008

Thorley, V. (2019). Is breastfeeding ‘normal’? Using the right language for breastfeeding. Midwifery, 69, 39–44. https://doi.org/10.1016/j.midw.2018.10.015 DOI: https://doi.org/10.1016/j.midw.2018.10.015

Tiwari, A., G, S., Meka, S., Varghese, B., Vishwakarma, G., & Adela, R. (2022). The effect of Nigella sativa on non-alcoholic fatty liver disease: A systematic review and meta-analysis. Human Nutrition and Metabolism, 28, 200146. https://doi.org/10.1016/j.hnm.2022.200146 DOI: https://doi.org/10.1016/j.hnm.2022.200146

Triansyah, A., Indarty, A., Tahir, M., Sabir, M., Nur, R., Basir-Cyio, M., ... & Rusydi, M. (2021). The effect of oxytocin massage and breast care on the increased production of breast milk of breastfeeding mothers in the working area of the public health center of Lawanga of Poso District. Gaceta Sanitaria, 35, S168–S170. https://doi.org/10.1016/j.gaceta.2021.10.017 DOI: https://doi.org/10.1016/j.gaceta.2021.10.017

Wagner, S., Kersuzan, C., Gojard, S., Tichit, C., Nicklaus, S., Thierry, X., ... & de Lauzon-Guillain, B. (2019). Breastfeeding initiation and duration in France: The importance of intergenerational and previous maternal breastfeeding experiences — results from the nationwide ELFE study. Midwifery, 69, 67–75. https://doi.org/10.1016/j.midw.2018.10.020 DOI: https://doi.org/10.1016/j.midw.2018.10.020

Walsh, S. M., Cordes, L., McCreary, L., & Norr, K. F. (2019). Effects of Early Initiation of Breastfeeding on Exclusive Breastfeeding Practices of Mothers in Rural Haiti. Journal of Pediatric Health Care, 33(5), 561–567. https://doi.org/10.1016/j.pedhc.2019.02.010 DOI: https://doi.org/10.1016/j.pedhc.2019.02.010

Zhang, K., Siziba, L. P., Suo, N. J., Rothenbacher, D., & Genuneit, J. (2022). Breastfeeding duration is positively associated with decreased smoking relapse in the postpartum period. Midwifery, 108, 103289. https://doi.org/10.1016/j.midw.2022.103289 DOI: https://doi.org/10.1016/j.midw.2022.103289

Downloads

Published

2022-06-27

How to Cite

Zakaria, R., & Astuti, S. C. D. . (2022). The Effect of Black Cumin (Nigella Sativa) on Breastfeeding Mothers. JURNAL INFO KESEHATAN, 20(1), 29–40. https://doi.org/10.31965/infokes.Vol20.Iss1.627

Issue

Section

Original Articles