In Silico Analysis of the NPC1L1 Inhibitor of Catechins from Green Tea

Authors

  • Erna Susanti Academy of Pharmacy and Food Analyst of Putra Indonesia Malang, Malang, East Java, Indonesia
  • Ellyvına Setyadini Academy of Pharmacy and Food Analyst of Putra Indonesia Malang, Malang, East Java, Indonesia

DOI:

https://doi.org/10.31965/infokes.Vol21.Iss1.965

Keywords:

In silico, Catechins, NPC1L1, Atherogenesis

Abstract

The main contributor to cardiovascular disease is atherosclerosis. The Liver X Receptor is one of the unexplored signaling pathways in atherosclerosis that contributes to cholesterol efflux and inhibitory inflammation (LXR). Catechin, as an LXR agonist, influences the expression of the NPC1L1 protein transporter, which inhibits cholesterol absorption. The objective of this study is to predict the NPC1L1 inhibitor of Catechins from Green Tea. The role of NPC1L1 inhibitors is to prevent atherogenesis. Molecular docking is the research method used. Pyrx's Open Babel was used for analysis. Autodock vina in Pyrx was employed for docking, and Chimera v1.8 was administered for visualization. The result of molecular interaction was assigned. Pose view was used in this study. Catechins have the potential to be an NPC1L1 inhibitor, according to the findings. The main parameters used to predict the biological effect were energy bonds, hydrogen bonds, and hydrophobic interactions of molecules with NPC1L1. All Catechins isolates had low affinity energy and a strong affinity for NPC1L1. Epigallocatechin gallate (EGCG) is the most effective inhibitor because it has the lowest binding energy and the most active sites, including Gln 200, Tyr 192, Trp 202, Cys 189, Gly 207, Asp 217, Gly 190, Phe 205, Asp 208. There are hydrogen bonds at Thr 219, Ile 218, Asn 204, Asn 211, Arg 201, and Asn 204. The interaction energy between NPC1L1 and EGCG is -7.5 kCal/mol. Based on the results of the in-silico analysis, the researchers concluded that Catechins have the potential to be an NPC1L1 inhibitor. Further research into molecular dynamic simulation and in vivo analysis is required to demonstrate the synergistic effect of Catechins as an inhibitor of atherogenesis.

Downloads

Download data is not yet available.

References

Adelina, R. & Kurniatri, A. A. (2018). Mekanisme Katekin Sebagai Obat Antidislipidemia (Uji In Silico). Buletin Penelitian Kesehatan, 46(3), 147-154. https://doi.org/10.22435/bpk.v46i3.899

Alqahtani, S., Qosa, H., Primeaux, B., & Kaddoumi, A. (2015). Orlistat limits cholesterol intestinal absorption by Niemann-pick C1-like 1 (NPC1L1) inhibition. Eur J Pharmacol., 762, 263-269. https://doi.org/10.1016/j.ejphar.2015.05.060

Altmann, S. W., Jr Davis, H. R., Zhu, L. J., Yao, X., Hoos, L. M., Tetzloff, G., Iyer, S. P. N., Maguire, M., Golovko, A., Zeng, M., Wang, L., Murgolo, N., & Graziano, M. P. (2004). Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science, 303(5661), 1201–1204. https://doi.org/10.1126/science.1093131

Asdaq, S. M. B., Ikbal, A. M. A., Sahu, R. K., Bhattacharjee, B., Paul, T., Deka, B., Fattepur, S., Widyowati, R., Vijaya, J., Mohaini, M. A., Alsalman, A. J., Imran, M., Nagaraja, S., Nair, A. B., Attimarad, M., & Venugopala, K. N. (2021). Nanotechnology Integration for SARS-CoV-2 Diagnosis and Treatment: An Approach to Preventing Pandemic. Nanomaterials, 11(7), 1841. https://doi.org/10.3390/nano11071841

Brooijmans, N., & Kuntz, I. D. (2003). Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol. Struct., 32, 335-373. doi: https://doi.org/10.1146/annurev.biophys.32.110601.142532

Cuff, A. L., Janes, R. W., & Martin, A. C. R. (2006). Analyzing the ability to retain sidechain hydrogen bonds in mutant proteins. Bioinformatic, 22(12), 1464-1470. https://doi.org/10.1093/bioinformatics/btl120

Davies, J. P., Levy, B., Ioannou, Y. A. (2000). Evidence for a Niemann-Pick C (NPC) gene family: identification and characterization of NPC1L1. Genomics, 65(2), 137–145. https://doi.org/10.1006/geno.2000.6151

Ervina, M., Pratama, M. R. F., Poerwono, H., Ekowati, J., Widyowati, R., Matsunami, K., & Sukardiman. (2021). In silico estrogen receptor alpha antagonist studies and toxicity prediction of Melia azedarach leaves bioactive ethyl acetate fraction. Journal of Advanced Pharmaceutical Technology and Research, 12(3), 236-241. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300330/

Ervina, M., Poerwono, H., Widyowati, R., Otsuka, H., Matsunami, K., & Sukardiman, S. (2021). Pregnane steroids from the leaves of Melia azedarach and apoptotic activity against T47D Cells. Asian Pacific Journal of Cancer Prevention, 22(6), 1967-1973. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8418864/

Fradera, X., Vu, D., Nimz, O., Skene, R., Hosfield, D., Wynands, R., Cooke, A. J., Hauns, A., King, A., Bennett, J., McGuire, R., & Uitdehaag, J. C. M. (2010), X-ray structures of the LXR alpha in its homodimeric form and implications for heterodimer signaling. J.Mol.Biol., 399(1), 120-132. http://doi.org/10.1016/j.jmb.2010.04.005

Grosdidier, A., Zoete, V., & Michielin, O. (2007). EADock: Docking of small molecules into protein active sites with a multiobjective evolutionary optimization. Proteins, 67(4), 1010-1025. http://doi.org/10.1002/prot.21367

Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714-2723. https://doi.org/10.1002/elps.1150181505

Gohlke, H., & Klebe, G.( 2002) Approaches to the description and prediction of the binding affinity of smallmolecule ligands to macromolecular receptors. Angew Chem Int Ed Engl, 41(15):2644–2676. https://doi.org/10.1002/1521-3773(20020802)41:15<2644::AID-ANIE2644>3.0.CO;2-O

Halperin, I., Ma, B., Wolfson, H., & Nussinov, R. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins, 47(4), 409-443. https://doi.org/10.1002/prot.10115

Hidayat, S., Cahyohartoto, A., Dewi, A. U., Mukminah, I. A., & Sigalingging, O. S. (2021). Uji Aktivitas Senyawa Bahan Alam terhadap Enzim Mpro pada SARS-CoV-2 Secara In Silico. JURNAL FARMASI DAN ILMU KEFARMASIAN INDONESIA, 8(3), 235–241. https://doi.org/10.20473/jfiki.v8i32021.235-241

Janowski, B. A., Grogan, M. J., Jones, S. A., Wisely, G. B., Kliewer, S. A., Corey, E. J., & Mangelsdorf, G. J. (1999). Structural requirement of ligands for oxysterol liver X receptors LXRα and LXRβ. Proc. Natl. Acad. Sci., 96(1), 266–271. https://doi.org/10.1073/pnas.96.1.266

Kim, H., Kim, J. K., Kang, L., Jeong, K., & Jung, S. (2010). Docking and scoring of quercetin and quercetin glycosides against α-amylase receptor. Bull. Korean Chem. Soc., 31(2), 461- 463. https://doi.org/10.5012/bkcs.2010.31.02.461

Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: methods and applications. Nature reviews Drug discovery, 3(11), 935-949. https://doi.org/10.1038/nrd1549

Leach, A. R. (2000). Molecular Modelling: Principle and Applications. 2nd ed. Pearson Education.

Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current computer-aided drug design, 7(2), 146-157. https://doi.org/10.2174/157340911795677602

Mukesh, B., & Rakesh, K. (2011). Molecular docking: A review. IJRAP, 2(6), 1746-1751.

Pirillo, A., Catapano, L.A., Norata, D.G. (2016). Niemann-Pick C1-Like 1 (NPC1L1) inhibition and cardiovascular disease. Curr Med Chem., 23(10), 983-999. https://doi.org/10.2174/0929867323666160229114111

Rendi, I. P., Maranata, G. J., Chaerunisa, H., Nugrahaeni, N., & Alfathonah, S. S. (2021). Molecular Docking of Compounds in Moringa oleifera Lam with Dipeptidyl Peptidase-4 Receptors as Antidiabetic Candidates. Jurnal Farmasi dan Ilmu Kefarmasian Indonesia, 8(3), 242–249. https://doi.org/10.20473/jfiki.v8i32021.242-249

Sulistyowaty, M. I., Widyowati, R., Putra, G. S., Budiati, T., & Matsunami, K. (2021). Synthesis, ADMET predictions, molecular docking studies, and in-vitro anticancer activity of some benzoxazines against A549 human lung cancer cells. Journal of Basic and Clinical Physiology and Pharmacology, 32(4), 385-392. https://doi.org/10.1515/jbcpp-2020-0433

Susanti, E. (2001). Aktivitas Katekin Terhadap Stabilisasi Plak (Dalam Rangka Memperkecil Resiko Serangan Jantung). El-Hayah, 2(2), 78-84. https://doi.org/10.18860/elha.v2i2.2214

Susanti, E. (2019, June). In silico analysis of bioactive compounds of Hibiscus sabdariffa as potential agonists of LXR to inhibit the atherogenesis process. In AIP Conference Proceedings (Vol. 2108, No. 1, p. 020008). AIP Publishing LLC. https://doi.org/10.1063/1.5109983

Susanti, E., Rudijanto, A., & Ratnawati, R. (2012). Catechins inhibit atherosclerosis in male rats on a high fat diet. Universa Medicina, 31(2), 81-87. Retrieved from https://univmed.org/ejurnal/index.php/medicina/article/view/99

Suryadi, A., Siswodihardjo, S., Widiandani, T., & Widyowati, R. (2021). Structure modifications of pinostrobin from Temu Kunci (Boesenbergia pandurata ROXB. SCHLECHT) and their analgesic activity based on in silico studies. Research Journal of Pharmacy and Technology, 14(4), 2089-2094. https://doi.org/10.52711/0974-360X.2021.00370

Susanti, E.M., Ciptati, C., Ratnawati, R., Aulanni’am, A., & Rudijanto, A. (2015). Molecular docking of Catechins with LXRα and LXRβ as potensial inhibitor aterogenesis. Int. J. Pharm. Tech. Res., 8(3), 340-346.

Weinglass, A. B., Kohler, M., Schulte, U., Liu, J., Nketiah, E. O., Thomas, A., Schmalhofer, W., Wiliam, B., Bildl, W., McMasters, D. R., Dai, K., Beers, L., McCann, M. E., Kaczorowski, G. J., Garcia, M. L. (2008). Extracellular loop C of NPC1L1 is important for binding to Ezetimibe. Proc Natl Acad Sci., 105(32), 11140–11145. https://doi.org/10.1073/pnas.0800936105

Yue, L., Ye, F., Gui, C., Luo, H., Cai, J., Shen, J., Chen, K., Shen, X., Jiang, H. (2005). Ligand-binding regulation of LXR/RXR and LXR/PPAR heterodimerizations: SPR technology-based kinetic analysis correlated with molecular dynamics simulation. Prot. Sci., 14, 812–822. https://doi.org/10.1110/ps.04951405

Downloads

Published

2023-03-31

How to Cite

Susanti, E., & Setyadini, E. . (2023). In Silico Analysis of the NPC1L1 Inhibitor of Catechins from Green Tea . JURNAL INFO KESEHATAN, 21(1), 116–128. https://doi.org/10.31965/infokes.Vol21.Iss1.965

Issue

Section

Original Articles